Measurements of radiative processes at NA48

Mauro Piccini CERN

on behalf of the NA48/2 Collaboration

Cambridge, CERN, Chicago, Dubna, Edinburgh, Ferrara, Firenze, Mainz, Northwestern, Perugia, Pisa, Saclay, Siegen, Torino, Vienna

HEP2007 - Manchester, UK, 19-25 July 2007

Outline

- $K^{\pm} \rightarrow \pi^{\pm} \pi^{0} \gamma$ decay
 - Formalism
 - Experimental status
 - NA48/2 measurement (preliminary)
- $K^{\pm} \rightarrow \pi^{\pm} e^{+} e^{-} \gamma$ decay
 - NA48/2 first evidence (preliminary)
- $\Xi^0 \rightarrow \Lambda \gamma \text{ end } \Xi^0 \rightarrow \Lambda^0 e^+e^-$
 - NA48/1 measurement (final)

The NA48/2 beam line

The NA48 detector

- Magnetic spectrometer (4 DCHs): $\Delta p/p = 1.0\% + 0.044\%*p$ [GeV/c] $\pi^{+}\pi^{-}\pi^{\pm}$ mass resolution about 1.7 Mev/c
- Liquid Krypton EM calorimeter (LKr) High granularity, quasi-homogenious; $\Delta E/E = 3.2\%/\sqrt{E} + 9\%/E + 0.42\%[GeV]$ $\sigma_x, \sigma_y \sim 1.5 \text{ mm}$ $\pi^0 \pi^0 \pi^{\pm}$ mass resolution about 1.4 Mev/c
- Hodoscope fast trigger; precise time measurement (200ps).
- Hadron calorimeter, muon veto counters, photon vetoes.

LV1 trigger: hodoscope and DCH multiplicity LV2 trigger: on-line data processing

$$\mathbf{K}^{\pm} \rightarrow \pi^{\pm} \pi^{0} \gamma \quad (\text{decay formalism})$$

$$\overbrace{\mathbf{K}^{\pm} \rightarrow \pi^{\pm} \pi^{0} }_{\mathbf{K}^{\pm} \rightarrow \pi^{0}} \xrightarrow{\mathbf{K}^{\pm} \rightarrow \pi^{0} }_{\mathbf{K}^{\pm} \rightarrow \pi^{0} \rightarrow \mathbf{K}^{\pm} \rightarrow \mathbf{K}$$

 $\Gamma^{\scriptscriptstyle\pm}$ depends on 2 variables (T*___ and W) that can be reduced to only one integrating over T*___

Sensitive variable:

 $\mathbf{P}^{*}_{\mathbf{K}} = 4$ -momentum of the K[±] $\mathbf{P}^{*}_{\mathbf{\pi}} = 4$ -momentum of the π^{\pm} $\mathbf{P}^{*}_{\mathbf{\gamma}} = 4$ -momentum of the γ

$$W^{2} = \frac{E_{\gamma}^{2}(E_{\pi} - P_{\pi} \cos \theta_{\pi \gamma})}{m_{K}m_{\pi}^{2}}$$

$K^{\pm} \rightarrow \pi^{\pm} \pi^{0} \gamma$ (amplitudes)

Two types of contributions:

Electric (J=I±1) dipole (E) Magnetic (J=I) dipole (M)

Electric contributions are dominated by the Inner Bremsstrahlung term

- DE shows up only at order O(p⁴) in CHPT: is generated by both E and M contributions
- **INT** term is sensitive to **E** only

Status of the art before NA48/II measurement:

 Inner Bremsstrahlung(IB) : $(2.75\pm0.15)\cdot10^{-4}$ PDG (2006) $(55<T_{\pi}^{*}<90 \text{ MeV})$

 Direct Emission (DE) : $(4.4\pm0.7)\cdot10^{-6}$ PDG (2006) $(55<T_{\pi}^{*}<90 \text{ MeV})$

 Interference (INT) : not yet measured

$K^{\pm} \rightarrow \pi^{\pm} \pi^{0} \gamma$ (exp results for DE and INT)

Experiment	Year	# Events	BR(DE) $\times 10^6$
E787 [20]	2000	19836	$4.7 \pm 0.8 \pm 0.3$
E470 [21]	2003	4434	$3.2 \pm 1.3 \pm 1.0$
E787 [22]	2005	20571	$3.5 \pm 0.6^{+0.3}_{-0.4}$
E470 [23]	2005	10154	$3.8 \pm 0.8 \pm 0.7$

All the measurements have been performed:

✓ in the T^*_{π} region **55-90 MeV** to avoid $\pi^{\pm}\pi^{0}$ and $\pi^{\pm}\pi^{0}\pi^{0}$ background

✓ assuming INT = 0

 $K^{\pm} \rightarrow \pi^{\pm} \pi^{0} \gamma$ (enlarged T^{*}_{π} region)

Use standard region $55 < T_{\pi}^* < 90$ MeV as safe choice for BG rejection

But.... region <55 MeV is the most interesting to measure DE and INT

This measurement is performed in the region

$0 < T_{\pi}^{*} < 80 \text{ MeV}$

to improve statistics and sensitivity to **DE**

$K^{\pm} \rightarrow \pi^{\pm} \pi^{0} \gamma$ (the selected data sample)

Event selection

- requirements on tracks
- requirements on LKR clusters
- effort into γs pairing
- requirements on the event closure

>All **physical BG** can be explained in terms of $\pi^{\pm}\pi^{0}\pi^{0}$ events only

- Very small contribution from accidentals
- > γ mistagging probability ("self background") is order of ‰

$K^{\pm} \rightarrow \pi^{\pm} \pi^{0} \gamma$ (W shapes from MC)

• 3 MC data samples for the 3 contributions to the decay

$K^{\pm} \rightarrow \pi^{\pm} \pi^{0} \gamma$ (Data-MC comparison)

IB contribution is very well reproduced by MC

$K^{\pm} \rightarrow \pi^{\pm} \pi^{0} \gamma$ (fit results)

First evidence of non zero INT term!

$$Frac(DE)_{0 < T^{*}\pi < 80 \text{ MeV}} = (3.35 \pm 0.35 \pm 0.25)\%$$

Frac(INT)_{0 < T^{*}\pi < 80 \text{ MeV}} = (-2.67 \pm 0.81 \pm 0.73)\%

2004 data set: x4 # events and lower systematic due to trigger

$K^{\pm} \rightarrow \pi^{\pm} \pi^{0} \gamma$ (comparison to others)

✓ For comparison with previous experiments the fraction of DE has been also measured, with:

- INT = 0
- 55<T*_π<90 MeV

$K^{\pm} \rightarrow \pi^{\pm} \pi^{0} \gamma$ (final remark)

- ✓ from D'Ambrosio and Cappiello (Phys.Rev.D75:094014,2007) new input to $K^{\pm} \rightarrow \pi^{\pm}\pi^{0}\gamma$ dynamics
- $d\Gamma \pm /dW$ should include a form factor (dependent on W)
- \rightarrow W shapes in MC samples need to be recomputed (DE shape only)
- \rightarrow the fit as well
- \rightarrow non negligible modifications are expected on DE and INT fractions
- \rightarrow The form factor can induce a fake positive INT term

$K^{\pm} \rightarrow \pi^{\pm} e^{+} e^{-} \gamma$ (BR measurement)

Never observed before

Naïve estimation of the BR: BR($K^{\pm} \rightarrow \pi^{\pm} e^{-\gamma}$)=BR($K^{\pm} \rightarrow \pi^{\pm} \gamma \gamma$)·2 α ~ 1.6·10⁻⁸

Theoretical expectation (χ Pt based, Gabbiani 99): BR(K[±] $\rightarrow \pi^{\pm}e^{+}e^{-}\gamma$)= (0.9-1.6)·10⁻⁸ depending from \hat{c}

Event sample:

92 candidates events with

1±1 accidental background 5.1±1.7 physical background

Normalization channel:

 K^{\pm} -> $\pi^{\pm}\pi^{0}_{D}$: 14M events

 $BR(K^{\pm} \rightarrow \pi^{\pm} e^{+} e^{-} \gamma) = (1.27 \pm 0.14_{stat} \pm 0.05_{sys}) \cdot 10^{-8}$

$$K^{\pm} \rightarrow \pi^{\pm} e^{+} e^{-}$$
 (bkg to $K^{\pm} \rightarrow \pi^{\pm} e^{+} e^{-} \gamma$)

Flavor changing neutral current decay, ΔS=1 (hep-ph/9808289)

7700 events with a background of 0.6% from 2003 and 2004 runs

Measurement of the linear slope of the form factor:

λ= 2.37 ± 0.17 (preliminary)

BR measurement is ongoing to extract both a_+ and b_+

Radiative Hyperon decays from NA48/1

- same detector as NA48/2
- neutral beam: mainly K⁰, Ξ^0 , Λ , n, γ

$$\alpha(\Xi^0 \rightarrow \Lambda \gamma) = -0.68 \pm 0.02 \text{stat} \pm 0.06 \text{syst}$$

Never observed before

Naïve estimation of the BR: BR($\Xi^0 \rightarrow \Lambda e^+e^-$)=BR($\Xi^0 \rightarrow \Lambda \gamma$)· $\alpha \sim 8.8 \cdot 10^{-6}$

Theoretical expectation (QED based, Bernstein 65): BR($\Xi^0 \rightarrow \Lambda e + e^-$) = (6.4-7.3)·10⁻⁶

Event sample:

412 candidates events with

7±5 accidental background 8±3 physical background

Normalization channel:

 $\Xi \rightarrow \Lambda \pi^0_{\ D}$: 30K events

BR(
$$\Xi \rightarrow \Lambda ee$$
) =7.7±0.5stat±0.4syst·10⁻⁶
 $\alpha(\Xi \rightarrow \Lambda ee)$ = -0.8 ± 0.2

Phys.Lett.B650:1-8,2007 (hep-ex/0703023)

Conclusion

NA48/2 recent results in charged radiative Kaon decays:
 o First evidence of non 0 INT term in K[±]→π[±]π⁰γ
 o First measurement of K[±]→π[±]e⁺e⁻γ BR

> NA48/1 results in radiative hyperon decays:

- New measurement of $\Xi^0 \rightarrow \Lambda \gamma$ decay asymmetry
- First evidence of the decay $\Xi^0 \rightarrow \Lambda e^+e^$ measurement of BR and decay asymmetry