

Associated Production for the Standard Model Higgs at CDF

D. Bortoletto Purdue University

•Outline:

- •Higgs at the Tevatron
 - $\bullet \text{WH} {\rightarrow} \, \ell \nu \text{ bb}$
 - ZH $\rightarrow \ell \ell$ bb
 - \bullet WH and ZH \rightarrow met bb
- Outlook

Strategy:

- Optimize lepton selection to improve $Z \rightarrow \ell \ell$ acceptance by 70%
- -Improve S/B :
 - Two loose b-tag: 50% efficient, 1.5% fake rate
 - One tight b-tag: 40% efficient, 0.5% fake rate
- Improve mass resolution
 - Use MET to improve mass resolution using NN since no real MET expected

Signal region

CDF Run II Preliminary Ldt = 1 fb⁻¹ - Single Tag

Expected: 101.6 ±17.8 Data: 100 events

Jet Liferyy Scale

Total systematic shift in σ ~ 0.19 pb

NN Tagging

- Apply neural net b-tagger on the information of SECVTX to improve the separation between b-jets and c-jets or light-jets
- NN input: Lxy significance, vertex mass, pseudo-ct...

Keeping 90% of true b-jets, 65% of I-jets and 50% of c-jets are removed!

Results WH→ℓvbb

At least 2 b-tagging (double tag) NN b-tagging is NOT applied

≥2 SECVTX without NN

Systematic Uncertainty

Source	Uncertainty (%)			
	= 1 tag w / NN tag	$\geq 2 tag$		
Lepton ID	$\sim 2\%$			
Trigger	< 1%			
ISR	1.8%	4.3%		
FSR	3.2%	8.6%		
PDF	1.7%	2.0%		
JES	2.3%	3.0%		
b-tagging	5.3%	16%		
Total	7.2%	19.1%		

Higgs Mass	Upper Li	imit (pb)
(GeV/c^2)	Observed	Expected
110	3.9	2.2
115	3.4	2.2
120	2.5	2.0
130	1.6	1.8
140	1.4	1.7
150	1.3	1.5

$W/Z \rightarrow MET and H \rightarrow bb$

 Z^*

Η

This final state can be used to search for:

 $ZH \to v \overline{v} b b$ $WH \to \ell \, \overline{v} b \overline{b}$

- Signal has a distinctive topology
 - Two jets
 - |η|<2.0 and one |η|<0.9
 - ET,jet1 > 35 GeV
 - ET,jet2 > 25 GeV
 - ΔR(j1,j2)>1.0
 - No other jets with ET> 20 GeV, $|\eta|{<}2.0$
 - Large MET (>50 GeV)
 - b-jets (use b-tagging)

Results

Tight SECVTX applied to this analysis both for single and double tagging

Sensitivity Optimization performed in extended signal region:

- E_{T.1} > 60 GeV and φ(E_{T.1}, MET) > 0.8
- MÉT > 70 GeV
- H_τ =scalar sum of the jet Et-s
- Missing H_T (vectorial sum of jet Et-s)
- Missing H_T / H_T > 0.45

Systematic uncertainties:

B-tagging: 8.6 % for double tags

Jet energy scale: 7%-26%

Luminosity: 6%

Z/W + heavy flavor normalization: 40%

Mass (GeV)	R _{expected} /σ×BR ZH	R _{expected} /σ×BR WH	R _{expected} /σ×BR VH	R _{observed} /σ×BR VH
110	22.5 / 2.2 pb	27.9 / 4.6 pb	12.4 (+5.1 / -4.0) / 3.3 pb	18.9 / 5.0 pb
115	28.0 / 2.2 pb	33.0 / 4.5 pb	14.4 (+7.0 / -4.7) / 3.1 pb	22.0 / 4.7 pb
120	28.3 / 1.8 pb	37.8 / 4.1 pb	16.4 (+7.1 / -4.7) / 2.8 pb	25.1 / 4.3 pb
125	33.1 / 1.6 pb	46.5 / 3.9 pb	20.7 (+8.2 / -6.1) / 2.8 pb	32.4 / 4.3 pb
130	42.0 / 1.6 pb	58.3 / 3.7 pb	24.8 (+8.6 / -7.1) / 2.5 pb	40.4 / 4.1 pb
135	55.1 / 1.5 pb	76 / 3.4 pb	32.6 (+15.2 / -10.3) / 2.4 pb	51.9 / 3.8 pb
140	75.3 / 1.4 pb	104.7 / 3.2 pb	44.9 (+18.2 / -13.5) / 2.2 pb	67.3 / 3.4 pb

200

Backup slides

Results WH→ℓvbb

=1 SECVTX with NN tagging

Expected 394.4 ± 66.6 Observed 421

Backgrounds

Single tag CR1: Dominated by QCD and mistags

Signal Region

S/B Optimization is performed in extended signal region

Jet energy

Missing ET

HT =scalar sum of the jet Et-s

Missing HT (vectorial sum of jet Et-s)

• $\phi(1^{st}$ Jet, Missing $E_{\tau}) > 0.8$

- Missing E_T > 70 GeV
- Missing H_T / H_T > 0.45
- 1^{st} Jet $E_{\tau} > 60$ GeV

