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The new physics flavor problem

Current status of the SM flavor sector

Highlights of last year results and their implications

The new goal of flavor physics: going beyond the SM
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The new physics flavor problem
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The SM is not perfect...

We know the SM does not describe gravity

At what scale it breaks down?

We parametrize a scale as the denominator of an effective
higher dimension operator. The weak scale is roughly

Leff =
µ eνν̄

Λ2
W

⇒ ΛW ∼ 100 GeV

The effective scale is roughly the masses of some
heavy fields times unknown couplings

Flavor bounds give Λ . 104 TeV
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Flavor and the hierarchy problem

There is tension:

The hierarchy problem ⇒ Λ ∼ 1 TeV

Flavor bounds ⇒ Λ > 104 TeV

Any TeV scale NP has to deal with the flavor bounds

⇓
Such NP cannot have a generic flavor structure

Flavor is mainly an input to
model building, not an output
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Dealing with flavor

Any viable NP model has to deal with this tension. Thus,
the NP at the TeV must not be generic

At what level we expect to see deviations from the SM
predictions?

There is no simple answer. Naively, we should have
seen it already

One class of models can accommodate “large” flavor
violations. That is, as large as current bounds

The other is Minimal Flavor Violation (MFV): The NP at
the TeV has minimal impact on flavor

Roughly, even in MFV we expect O(1%) effects. Clearly
the exact numbers and modes are important

Y. Grossman Flavor physics EPS07 – p.6



The goal of flavor physics

Flavor physics must look for problems with the SM in order
to see the nature of the NP

“past”: Confirmation that the SM explain flavor physics
at leading order

“future”: Looking for small deviations from SM
predictions. As a rough guideline aiming at the 1% level

The main issue is theoretical uncertainties, that is,
QCD. The name of the game is to try to overcome QCD
and get to the fundamental physics
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Current status of the SM flavor sector
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The SM flavor sector

At present there are no significant deviations
from the SM predictions in the flavor sector

There are some hints

Global fit

aCP(B → ψKS) vs aCP(B → φKS)

B → Kπ
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Global fit
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Global fit (zoom in)

Very impressive agreement
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CP asymmetries in b→ ss̄s modes

Time dependent CP asymmetries measure the phase
between the mixing and twice the decay amplitudes

In the SM
arg(Amix) = 2β

arg(Ab→cc̄s) = 0 (Tree) B → ψKS

arg(Ab→ss̄s) = 0 (Penguin) B → φKS, B → η′KS , ...

To first approximation the SM predicts

aCP(B → ψKS) = aCP(B → φKS) = sin 2β

The theoretical uncertainties are small. The question is
how small. Roughly, O(5%)
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b→ sss data

sin(2βeff) ≡ sin(2φe
1
ff)
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SP = 0.56 ± 0.05

ST = 0.68 ± 0.03

About 2σ

Theoretical uncertainties
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B → Kπ

Consider the four decays

B+ → K0π+ b→ dd̄s

B+ → K+π0 b→ dd̄s or b→ uūs

B0 → K+π− b→ uūs

B0 → K0π0 b→ dd̄s or b→ uūs

There are many SM relations between the rates and CP
asymmetries of these modes

To first approximation, all the rates are equal since the
penguin diagram dominate
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The B → Kπ data

Data on rates agrees with the SM. For example

RL =
2Γ(B+ → K+π0) + 2Γ(B0 → K0π0)

Γ(B+ → K0π+) + Γ(B0 → K+π−)
= 1 +O(10−2)

Experimentally, RL = 1.07 ± 0.09

The (direct) CP asymmetries are problematic. In the SM

aCP (B → K+π−) ≈ aCP (B → K+π0)

The data, however

aCP (B → K+π−) = −0.10 ± 0.01

aCP (B → K+π0) = 0.05 ± 0.03
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The status of the SM flavor sector

Overall, the SM is very successful in describing flavor

At present there are hints for NP

We are not yet at the level that we can conclude either
way

Eventually, on these two examples, theory might be the
limited factor (not yet)
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Highlights of new flavor results
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Bs mixing

Not easy since the mixing is very fast

New results from D0 and CDF

First observation of Bs oscillation (> 5σ)

∆Ms = 17.77 ± 0.10 ± 0.07 ps−1

Progress in determining the mixing phase and ∆Γ

In the SM the calculation is rather precise. No surprises
so far
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D − D̄ mixing

Not easy since the mixing is very small

x ≡
∆m

Γ
y ≡

∆Γ

2Γ

First indications for mixing from BaBar and Belle

Found in several decay modes

D → K+K− D → π+π− D → Kππ D → Kπ

Roughly a 4σ signal for oscillation. Mainly in y

No signal for CPV
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D − D̄ mixing: Theory

Two parameters

x ≡
∆m

Γ
y ≡

∆Γ

2Γ

Can we calculate them in the SM?

Very hard to calculate. The charm is not really heavy
and not really light

The only robust SM prediction is that there is no CPV
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D −D mixing predictions

H. Nelson,hep-ex/9908021

• : NP predictions for x

4 : SM predictions for x

� : SM predictions for y
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SU(3) breaking

The contribution form the third generation is negligible

D −D mixing vanishes in the flavor SU(3) limit (GIM)

It arises only at second order in SU(3) breaking

x, y ∼ sin2 θC ε2SU(3) εSU(3) ∼
ms

Λ

What is Λ?

Λ ∼ mc ⇒ ε2SU(3) ∼ 10−2 ⇒ x, y . 10−3

Λ ∼ Q < mc ⇒ ε2SU(3) ∼ 10−1 ⇒ x, y . 10−2

Can we get better estimates?
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Inclusive vs exclusive calculations

inclusive exclusive

Assumption heavy charm light charm

SU(3) breaking amplitudes phase space

Uncertainty matrix elements decay rates

Conclusion x, y . 10−3 x, y . 10−2

If the indications for oscillation are confirmed

The exclusive calculation seems to be right

It might be that the charm is too light for this OPE

No CPV implies no hints for NP
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The future of flavor physics
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What next for flavor physics?

We need to aim at the 1% level to find deviations from
the SM

Can we go below the 1% level?

Experimentally? Yes (Next talks)

Theoretically? Yes!
B → DK

CPV in D decays
KL → π0νν̄

...
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Conclusions
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Conclusions

It is not easy to understand how come the SM
describes flavor so good

A very rough prediction is that we will see deviations at
or above the 1% level

There are few modes that give superb theoretical
predictions. We need to go after these modes in order
to probe flavor at the 1% level
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Backup slides
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Inclusive calculation

Georgi; Bigi and Uraltsev

Perform an OPE assuming Λ/mc � 1 with Λ ∼ 1 GeV

The box diagram is the leading term (4 quark operators)

Higher order terms have fewer powers of ms and are
more important

With some assumptions

x, y . 10−3
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Exclusive calculation

Falk et al.

Using hadrons to calculate

Assume that there are only small number of final states
and sum their contributions to x and y

Cannot really do it since we need very precise
experimental data

Phase space effects are a calculable source of SU(3)
breaking

They are important since large fraction of D decays is
to final states close to threshold

With some assumptions

x, y . 1%
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Example: PP

Consider only the charged mesons U spin triplet

yU = sin2 θC ×
[

Φ(π+, π−) + Φ(K+,K−) − Φ(K+, π−) − Φ(K−, π+)
]

yU is the “would-be" value of y, if D only decays to
these four states

We assume that SU(3) breaking enters only via the
phase space function Φ

The result is explicitly proportional to sin2 θC and
vanishes in SU(3) limit as m2

s

Similar calculations were done for other SU(3) multiplets
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Two–body final states

Final state ε2SU(3)

(PP )s-wave −0.011

(PV )p-wave 0.14

(V V )s-wave −0.14

(V V )p-wave −0.24

(V V )d-wave 1.1

Only SU(3) breaking in
phase space

Contribution of PP is
“anomalously" small

Larger SU(3) breaking for
heavier multiplets
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Conclusions from this analysis

Fraction of the D width rounded to nearest 5%:

Final state fraction ε2SU(3)

PP 5% O(10−2)

PV 10% O(10−1)

V V 10% O(1)

3P 5% O(1)

4P 10% O(1)

We expect y ∼ sin2 θC ε
2
SU(3) ∼ 1%

Moral: It would require cancellations to suppress y
much below ∼1%
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The new physics scale

Baryon and lepton number violating operators. From
proton decay data

QQQL

Λ2
⇒ Λ & 1016 GeV

Flavor and CP violating operators. From meson data
(UTfit, arxiv:0707.0636)

QQQQ

Λ2
⇒ Λ & 108 GeV

Electroweak data (Custodial symmetry violation)

Λ & 1 TeV
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Exact and broken symmetries

There is fundamental difference between the first and the
last two

Baryon and lepton numbers may be exact symmetries.
Thus, the new operators may be small due to the high
scale or due to a symmetry.

Flavor symmetry and custodial symmetry are known to
be broken by the SM. There cannot be an exact
symmetry that protect the new operators

These two scales are associated with hierarchy problems

The new physics flavor problem

The little hierarchy problem

The NP flavor problem is stronger in terms of scales.
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The NP scale

Low energy observables put severe constraints on NP
models

Generally we have the most general operators
QQQL

Λ2
⇒ proton decay ⇒ Λ & 1016 GeV

LLHH

Λ
⇒ neutrino masses ⇒ Λ ∼ 1015 GeV

Proton decay and neutrino masses can be protected by
conserve symmetries like B − L or R-parity.

What about flavor bounds?
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B → Kπ diagrams
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P is a loop amplitude, but due to CKM factors P � T
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