Probing Low Energy Neutrino Backgrounds with Neutrino Capture on Beta Decaying Nuclei

<u>M. Messina</u> (*LHEP*, *University of Bern*, *Switzerland*) A.G. Cocco, G.Mangano and M.M., JCAP06(2007)015

The longstanding question (I)

Is it possible to make a measurement of the Cosmological Relic Neutrinos?

We know that CRN are non-relativistic and weakly-clustered

- Absorption dips in the Extremely Energetic Cosmic v (EEC v)spectra (>10²² eV) where the Z⁰ resonace is produced by mean of EECv scattering off CRN.
 Neutrino sources of so high energy are not observed yet.
- Macrosocpic forces due to coherent elasctic scattering of CRN off target material in torsion balance (N. Cabibbo and L. Maiani, Phys.Lett. B 114, 115 (1982)).
 This approach requires strong v-v asymmetry or neutrino target polarization.

The longstanding question (II) Is it possible to make a measurement of the Cosmological Relic Neutrinos?

interactions of extremely high energy particles from terrestrial accelerator beams with the relic neutrino.
 In this case energy beam required is E_{beam}>10⁷ TeV

Fro a review on the subject see: A.Ringwald "Neutrino Telescopes" 2005 – hep-ph/0505024 G.Gelmini hep-ph/0412305

In the long list of the ideas that physicists have proposed so far it was never considered a process where the n can contribute only via its flavour quantum number and no additional energy is required.

Our proposal

is to use a preocess without energy threshold

Since the nucleus decays spontaneously also a neutrino with vanishing energy stimulates the NCB process.

The NCB is a process with no energy threshold

NCB signature

Neutrino masses of the order of 1 eV are compatible with the present picture of our Universe

The events induced by Neutrino Capture have a unique signature: the expected electron energy is separated by $2m_v$ from the beta decay endpoint.

How to evaluate NCB cross section

The amplitudes of the two processes are the same this fact allows to evaluate the NCB cross section

NCB Cross Section (I)

Beta decay rate $\lambda_{\beta} = \frac{G_{\beta}^2}{2\pi^3} \int_{m_e}^{W_o} p_e E_e F(Z, E_e) C(E_e, p_{\nu})_{\beta} E_{\nu} p_{\nu} dE_e$

NCB
$$\sigma_{\text{\tiny NCB}} v_{\nu} = \frac{G_{\beta}^2}{\pi} p_e E_e F(Z, E_e) C(E_e, p_{\nu})_{\nu}$$

The nuclear shape factors C_{β} and C_{ν} depend on nuclear matrix elements but it can be shown that a simple relation holds:

$$C(E_e, p_\nu)_\nu = C(E_e, -p_\nu)_\beta$$

It is convenient to define
$$\mathcal{A} = \int_{m_e}^{W_o} \frac{C(E'_e, p'_\nu)_\beta}{C(E_e, p_\nu)_\nu} \frac{p'_e}{p_e} \frac{E'_e}{E_e} \frac{F(E'_e, Z)}{F(E_e, Z)} E'_\nu p'_\nu dE'_e$$
$$\sigma_{\rm NCB} v_\nu = \frac{2\pi^2 \ln 2}{\mathcal{A} t_{1/2}}$$

NCB Cross Section (II) on different types of decaying nuclei

• Super-allowed transitions $\sigma_{\text{\tiny NCB}}v_{\nu} = 2\pi^2 \ln 2 \frac{p_e E_e F(Z, E_e)}{ft_{1/2}}$ (Δ J=0, 0 \rightarrow 0) $\pi_i \pi_f = 1$)

- This is a very good approximation also for allowed transitions since $\frac{C(E_e, p_{\nu})_{\beta}}{C(E_e, p_{\nu})_{\nu}} \simeq 1$
- *i-th* unique forbidden

$$(\Delta J=i)$$

$$C(E_e, p_{\nu})^i_{\beta} = \left[\frac{R^i}{(2i+1)!!}\right]^2 \left|{}^{\scriptscriptstyle A}F^{(0)}_{(i+1)\,i\,1}\right|^2 u_i(p_e, p_{\nu})$$

$$\mathcal{A}_{i} = \int_{m_{e}}^{W_{o}} \frac{u_{i}(p'_{e}, p'_{\nu})p'_{e}E'_{e}F(Z, E'_{e})}{u_{i}(p_{e}, p_{\nu})p_{e}E_{e}F(Z, E_{e})}E'_{\nu}p'_{\nu}dE'_{e}$$

NCB Cross Section Evaluation (I) The case of Tritium

Using the expression
$$\sigma_{\text{\tiny NCB}}v_{\nu} = rac{G_{eta}^2}{\pi}p_e E_e F(Z,E_e)C(E_e,p_{
u})_{
u}$$

we obtain
$$\sigma_{\text{\tiny NCB}}(^{3}\text{H}) \, \frac{v_{\nu}}{c} = (\ 7.7 \pm 0.2 \) \times 10^{-45} \ \text{cm}^{2}$$

where the error is due to Fermi and Gamow-Teller matrix element uncertainties

Using shape factors ratio
$$\sigma_{\scriptscriptstyle
m NCB} v_{
u} = {2\pi^2 \ln 2 \over {\cal A} \; t_{1/2}}$$

$$\sigma_{\rm NCB}({}^{3}{\rm H})\frac{v_{\nu}}{c} = (7.84 \pm 0.03) \times 10^{-45} {\rm ~cm}^{2}$$

where the uncertainty is due only to uncertainties on Q_{β} and $t_{1/2}$

Cross Section curves for some cases

An important result of the paper is that the cross section does not vanish when the neutrino energy becomes negligible.

NCB Cross Section Evaluation (III) using measured values of Q_{β} and $t_{1/2}$

Beta decaying nuclei having BR(β^{\pm}) > 5 % selected from 14543 decays listed in the ENSDF database

NCB Cross Section Evaluation (III) specific cases

Q_eta	Half-life	$\sigma_{ m NCB}(v_{ m u}/c)$
(keV)	(sec)	(10^{-41} cm^2)
	1000.00	× 00 10-3
885.87	1320.99	5.36×10^{-3}
1891.8	71.152	1.49×10^{-2}
3210.55	6.3502	3.54×10^{-2}
4469.78	1.5280	5.90×10^{-2}
5022.4	0.92512	7.03×10^{-2}
5403.63	0.68143	7.76×10^{-2}
6028.71	0.42299	9.17×10^{-2}
6610.43	0.28371	1.05×10^{-1}
7220.6	0.19350	1.20×10^{-1}
	$egin{array}{c} Q_{eta} \ ({ m keV}) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$\begin{array}{c c c} Q_{\beta} & \text{Half-life} \\ (\text{keV}) & (\text{sec}) \\ \hline \\ 885.87 & 1320.99 \\ 1891.8 & 71.152 \\ 3210.55 & 6.3502 \\ 4469.78 & 1.5280 \\ 5022.4 & 0.92512 \\ 5403.63 & 0.68143 \\ 6028.71 & 0.42299 \\ 6610.43 & 0.28371 \\ 7220.6 & 0.19350 \\ \hline \end{array}$

Super-allowed $0^+ \rightarrow 0^+$ decays used for CVC hypothesis testing (very precise measure of Q_β and $t_{1/2}$)

Isotope	Decay	Q	Half-life	$\sigma_{ m NCB}(v_{ m }/c)$
		(keV)	(sec)	(10^{-41} cm^2)
^{3}H	β^{-}	18.591	3.8878×10^{8}	7.84×10^{-4}
⁶³ Ni	β^{-}	66.945	3.1588×10^{9}	1.38×10^{-6}
93 Zr	β^{-}	60.63	4.952×10^{13}	2.39×10^{-10}
106 Ru	β^{-}	39.4	3.2278×10^7	5.88×10^{-4}
107 Pd	β^{-}	33	2.0512×10^{14}	2.58×10^{-10}
$^{187}\mathrm{Re}$	β^{-}	2.64	1.3727×10^{18}	4.32×10^{-11}
$^{11}\mathrm{C}$	β^+	960.2	1.226×10^{3}	4.66×10^{-3}
^{13}N	β^+	1198.5	5.99×10^2	5.3×10^{-3}
$^{15}\mathrm{O}$	β^+	1732	1.224×10^2	9.75×10^{-3}
18 F	β^+	633.5	6.809×10^{3}	2.63×10^{-3}
22 Na	β^+	545.6	9.07×10^7	3.04×10^{-7}
⁴⁵ Ti	β^+	1040.4	1.307×10^{4}	3.87×10^{-4}

Nuclei having the highest product $\sigma_{\rm NCB} t_{1/2}$

Relic Neutrino Detection

The cosmological relic neutrino capture rate is given by

$$\lambda_{\nu} = \int \sigma_{\rm NCB} v_{\nu} \, \frac{1}{\exp(p_{\nu}/T_{\nu}) + 1} \, \frac{d^3 p_{\nu}}{(2\pi)^3} \qquad \qquad T_{\nu} = 1.7 \cdot 10^{-4} \, \text{eV}$$

after the integration over neutrino momentum and inserting numerical values we obtain

$$2.85 \cdot 10^{-2} \frac{\sigma_{\rm NCB} v_{\nu}/c}{10^{-45} {\rm cm}^2} {\rm yr}^{-1} {\rm mol}^{-1}$$

In the case of Tritium we estimate that 7.5 neutrino capture events per year are obtained using a total mass of 100 g

Relic Neutrino Detection (I) signal to background ratio

The ratio between capture (λ_v) and beta decay rate (λ_β) is obtained using the previous expressions

$$\frac{\lambda_{\nu}}{\lambda_{\beta}} = \frac{2\pi^2 n_{\nu}}{\mathcal{A}}$$

In the case of Tritium $\lambda_v({}^{3}H) = 0.66 \cdot 10^{-23} \lambda_\beta({}^{3}H)$ is obtained under the assumption m_v=0

Relic Neutrino Detection (II) signal to background ratio

As a general result for a given experimental resolution Δ the signal (λ_{ν}) to background (λ_{β}) ratio is given by

$$\frac{S}{B} = \frac{9}{2}\zeta(3) \left(\frac{T_{\nu}}{\Delta}\right)^3 \frac{1}{\left(1 + 2m_{\nu}/\Delta\right)^{3/2}} \left[\frac{1}{\sqrt{2\pi}} \int_{\frac{2m_{\nu}}{\Delta} - \frac{1}{2}}^{\frac{2m_{\nu}}{\Delta} + \frac{1}{2}} e^{-x^2/2} dx\right]^{-1}$$

where the last term is the probability for a beta decay electron at the endpoint to be measured beyond the $2m_y$ gap

Relic Neutrino Detection discovery potential

As an example, given a neutrino mass of 0.7 eV and an energy resolution at the beta decay endpoint of 0.2 eV a signal to background ratio of 3 is obtained. In the case of 100 g mass target of Tritium it would take one and a half year to observe a 5σ effect.

<u>A larger interaction rate is obtained in case of v gravitational</u> clustering. (Ringwald A. and Wong Y. Y. Y., JCP12(2004)005)

m _v (eV)	FD (events/yr)	NFW (events/yr)	MW (events/yr)
0.6	7.5	90	150
0.3	7.5	23	33
0.15	7.5	10	12

Conclusions

•The fact that neutrino has a nonzero mass has renewed the interest on Neutrino Capture on Beta decaying nuclei as a <u>tool to measure</u> <u>very low energy neutrino</u>

•A detailed study of NCB cross section has been performed for a large sample of known beta decays and a method to reduce the uncertainty due to nuclear matrix elements evaluation has been found.

•The relatively high NCB cross section when considered in a favourable scenario could bring cosmological relic neutrino detection within reach in a near future if:

- neutrino mass is in the eV range
- a good energy resolution of 0.1 0.2 eV is achieved