Duality Based Vector and Axial Form Factors-Improved Modeling of Quasielastic Neutrino Cross Sections at all Energies

ARIE BODEK University of Rochester

(in collaboration with S. Avvakumov, H. Budd, R. Bradford) BBBA2007 Vector and Axial Form Factors

> EPS Manchester Thursday July 19, 2007 16:00-16:25

http://agenda.hep.man.ac.uk/contributionDisplay.py?contribId=60&sessionId=16&confld=70

Arie Bodek, Univ. of Rochester

Neutrino Oscillations experiments need to know the

precise energy dependence of low energy neutrino interactions: Need to

Understand both vector and axial form factors, and nuclear corrections

The hadronic current for QE neutrino scattering is given by [2] Axial form factor
$$F_A$$

 $< p(p_2)|J_{\lambda}^+|n(p_1) >=$
 $\overline{n}(p_2) \left[\gamma_{\lambda}F_{1}^{+}(q^2) + \frac{i\sigma_{\lambda\nu}q^{\nu}\xi F_{\nu}^{2}(q^2)}{2M} + \gamma_{\lambda}\gamma_{5}F_{A}(q^2) + \frac{q_{\lambda}\gamma_{5}F_{P}(q^2)}{M} \right] u(p_1),$
Vector F_V
 $\frac{d\sigma^{\nu}, \overline{\nu}}{dq^2} = \frac{M^2 G_F^2 \cos^2 \theta_C}{8\pi E_V^2} \times \left[A(q^2) \mp \frac{(s-u)B(q^2)}{M^2} + \frac{C(q^2)(s-u)^2}{M^4} \right],$
where
 $A(q^2) = \frac{m^2 - q^2}{4M^2} \left[\left(4 - \frac{q^2}{M^2} \right) |F_A|^2 \right] + \frac{2}{M^4} \left[|\xi F_V^2|^2 \right] \left(1 + \frac{q^2}{M^2} \right) - \frac{4q^2 ReF_V^{1*} \xi F_V^2}{M^2} \right],$
 $B(q^2) = -\frac{q^2}{M^2} ReF_A^*(F_V^1) + \xi F_V^2), \ C(q^2) = \frac{1}{4} \left(|F_A|^2 + |F_V^1|^2 - \frac{q^2}{M^2} \left| \frac{\xi F_V^2}{2} \right|^2 \right).$

Vector form factor F_{ν}

BBBA2007: Start with vector form factors

- New Vector Form Factors new fit to (Gep, Gmp, Gen, Gmn) From Electron Scattering data
- 1. Incorporation of the recent BLAST results- Gep Gmp- C.B. Crawford et al, Phys. Rev. Lett 98, 052301 (2007).
- 2. Improved functional form that builds on the Kelly form [J. Kelly, Phys. Rev. C 70, 068202 (2004)]
- 3. Multiply by a modulating functions using the Nachtman scaling variable ξ to relate elastic and inelastic (vector and axial nucleon form factors);
- Excellent low Q² description of the spatial structure of the nucleon by <u>constraining the fit</u> to yield the same values as Arrington and Sick Q² < 0.64 (GeV/c)². J. Arrington I.Sick, nucl-th/0612079 (Submitted to Phys.Rev.C.)
- 5. Extend to satisfy quark-hadron duality constraints on the ratio of form factors at high- Q^2 ($\xi = 1$): (a) Gmn/Gmp; (b) (Gen/Gmn)/(Gep/Gmp)

Start with Kelly (2004) form for Gep,Gmp

Constraint 0:

Get excellent low Q² description of the spatial structure of the nucleon by constraining the fit to yield the same values as Arrington and Sick Q² < 0.64 (GeV/c)². "Precise determination of low-Q nucleon electromagnetic form factors and their impact on parity-violating e-p elastic scattering" John Arrington (Argonne, PHY), Ingo Sick (Basel U.). Dec 2006. Submitted to Phys.Rev.C e-Print: nucl-th/0612079

Arrington and Sick fit elastic differential cross sections and polarization data and include corrections for.

- 1. Two photon exchange effects
- 2. Nucleon coulomb field corrections on incoming and outgoing lepton

Since we fit form factors instaed of differential cross section we include these corrections by requiring our fits to agree with Arrington and Sick exactly for $Q^2 < 0.64 \ (GeV/c)^2$

$\boldsymbol{\xi}$ in Elastic Scattering -for quark hadron duality

We use for x=1 elastic scattering (with $m_F = m_I = 0$ and Pt =0) ξ becomes)

$$\xi = \frac{2}{(1+\sqrt{1+1/\tau})}$$
 $\tau = Q^2/4M_N^2$

We use the above for ξ elastic

* The most general derivation of fractional momentum carried by quark of initial Pt, initial mass m₁ and final mass m_F (A and B included for higher order QCD effects) yields (Bodek, Yang):

 $ξ = \frac{Q'^2 + B}{M_V [1+(1+Q^2/v^2)]^{1/2} + A}$

Where: $2Q'^2 = [Q^2 + m_F^2 - m_1^2] + \{(Q^2 + m_F^2 - m_1^2)^2 + 4Q^2(m_1^2 + P^2t)\}^{1/2}$

For **Pt =0 one gets the Barbieri variable** ξ [R. Barbieri et al Phys. Lett. 64B, 1717 (1976); Nucl. Phys. B117, 50 (1976)]

For **m**_F = **m**_I = 0 and Pt = 0 - one gets the Nachtman or Georgi Politzer variable ξ. H. Georgi and H. D. Politzer, Phys. Rev. D14, 1829 (1976)

ξ in Elastic Scattering -for quark hadron duality Gmp

ξ in Elastic Scattering -for quark hadron duality Gep

Constraint 1 Gmn: From local duality:

F_{2n}/F_{2p} for Inelastic and Elastic scattering should be the same at high Q²

ξ->1

In the limit of $v \rightarrow \infty$, $Q^2 \rightarrow \infty$: •

 $F_{2} = x \sum_{i}^{i} e_{i}^{2} f_{i}(x)$ $\Rightarrow \left(\frac{G_{mn}}{G_{mp}}\right)^{2} \approx \left(\frac{F_{2n}}{F_{2p}}\right)^{2} \approx \frac{1+4\frac{d}{u}}{4+\frac{d}{u}}$ In the elastic limit: $(F_{2n}/F_{2p}) \rightarrow (G_{mn}/G_{mp})^2$ ٠

We do fits with d/u=0

$$(\mathsf{F}_{2n}/\mathsf{F}_{2p}) \rightarrow (\mathsf{G}_{mn}/\mathsf{G}_{mp})^2$$

We do fits with d/u=0.2

$$\mathsf{F}_{2n}/\mathsf{F}_{2p}$$
) $(\mathsf{F}_{2n}/\mathsf{F}_{2p}) \rightarrow (\mathsf{G}_{mn}/\mathsf{G}_{mp})^2$

-->0.43 **ξ->1**

Note, F2inelastic=F2respnance appears to be valid for the average of the resonance region (global duality). Local duality sates that it may be valid for the sum of elastic peak and first resonance, and possibly also in the limit of the elastic peak only. We only assume that any violations of local duality will cancel in this ratio

 \mathcal{U}

Constraint 1 Gmn: From local duality: F_{2n}/F_{2p} for Inelastic and Elastic scattering should be the same at high Q²

Constraint 2: Gen Rp=Rn (from QCD) From local duality R for inelastic, and R for elastic should be the same at high Q2:

Note,

R-inealstic=R-resoance appears to be valid for the average of the resonance region (global duality). Local duality sates that it may be valid for the sum of elastic peak and first resonance, and possibly also in the limit of the elastic peak only. We only assume that any violations of local duality will cancel in this double ratio.

BBBA2007 (Bodek, Budd, Bradford, Avvakumov 2007)

Start with Functional form similar to that used by J. Kelly for Gep and Gmp only (satisfies correct power behavior at high Q²)

15

Updated Kelly form]	a_1	b_1	b_2	b_3	χ^2/ndf
parameters for Gep	G_{Ep}^{Kelly}	-0.24	10.98	12.82	21.97	0.78
and Gmp	G_{Mp}^{Kelly}	0.17195	11.2595	19.3219	8.33346	1.03

TABLE I: Parameters for G_{Ep}^{Kelly} and G_{Mp}^{Kelly} . Our parameterization employs the as-published Kelly parameterization to G_{Ep}^{Kelly} and an updated set of parameters for $G_{Mp}^{Kelly}(Q^2)$ that includes the recent BLAST[8] results.

Lagrange modulating function

	ξ, Q^2	$\substack{p_1\0,0}$	$p_2 \\ 0.167, 0.029$	p_3 0.333, 0.147	$p_4 \\ 0.500, 0.440$	p_5 0.667, 1.174,	p_6 0.833, 3.668	p_7 1.0, ∞	
Ratio to updated Kelly	$\begin{array}{c} A_{Ep} \\ A_{Mp} \end{array}$	1. 1.	0.992707 1.001060	0.989825 0.999111	0.997507 0.997339	0.981319 1.000996	$\begin{array}{c} 0.934137 \\ 1.000214 \end{array}$	1. 1.	Gep Gmpl
	$A_{Ep-dipole}$ $A_{Mp-dipole}$	1. 1.	0.983874 0.991586	0.963178 0.977073	0.974797 0.980147	$0.913645 \\ 1.032083$	$0.544722 \\ 1.042908$	-0.26820 0.508400	ratio to Dipole for
Gmn,Gen parameters	$A^{25}_{Mn} \\ A^{43}_{Mn}$	1. 1.	0.995531 0.995911	0.986748 0.985066	$\frac{1.017259}{1.018644}$	1.034998 1.030693	0.911895 0.907969	0.729953 0.955653	convenience
	A_{En}^{25}	1.	1.101871	1.137845	1.019028	1.103693	1.522403	0.970600	
	$\frac{A_{En}}{A_{FA}^{25-dipole}}$	1.0000	0.913266	0.995466	1.104324	1.175318	1.391203	0.744317	FA ratio to dipole axial parameters

TABLE II: Fit parameters for $A_N(\xi)$, the LaGrange portion of the new parameterization. Note A_{Mn}^{25} , A_{En}^{25} , and A_{FA}^{25} are constrained to have $\frac{d}{u} = 0$ at $\xi = 1$, and A_{Mn}^{43} , A_{En}^{43} , are constrained to have $\frac{d}{u} = 0.2$.

BBBA2007...Axial

New Axial Form Factor (${\rm F}_{\rm A}$)

• We perform new extractions of. M_A and F_A from previous neutrino Deuterium data, using the updated vector form factors, and updated constants.

g_A	-1.267
G_F	$1.1803 \times 10^{-5} \text{ GeV}^{-2}$
$\cos \theta_c$	0.9740
μ_p	$2.793 \ \mu_N$
μ_n	$-1.913 \ \mu_N$
ξ	$3.706 \mu_N$
M_V^2	$0.71 \ { m GeV^2}$

Table 1

The most recent values of the parameters used in our calculations (Unless stated otherwise).

$$G_D^{V,A}(Q^2) = \frac{C^{V,A}}{\left(1 + \frac{Q^2}{M_{V,A}^2}\right)^2}.$$

Iere $C^{V,A} = (1,g_A), g_A = -1.267, M_V^2 = 0.71 \ (GeV/c)^2,$
nd $M_A = 1.015 \ GeV/c$ (as discussed below).

Experiment	M_A	ΔM_A
	(published)	new-old
$Miller - D - ANL_{82,77,73}$	1.00 ± 0.05	-0.035
$Baker - D - BNL_{81}$	1.07 ± 0.06	-0.032
$Kitagaki - D - FNAL_{83}$	$1.05_{-0.16}^{+0.12}$	-0.024
$Kitagaki - D - BNL_{90}$	$1.070^{+0.040}_{-0.045}$	-0.039

We find new world average (Neutrino D2 data

And pion electro-production data) for $\rm M_A$

average values is 1.0155 ± 0.0136 .

Miller 1982- ANL deuterium

- Miller is an updated version of Barish with 3 times the data
- They used Ga=-1.23 and Ollson Form factors
- 0.035 GeV should be subtracted from their fit value for modern form factors and Ga=-1.267

g_A	-1.267
G_F	$1.1803 \times 10^{-5} \text{ GeV}^{-2}$
$\cos \theta_c$	0.9740
μ_p	2.793 μ_N
μ_n	$-1.913 \mu_N$
ξ	$3.706 \mu_N$
M_V^2	$0.71 { m ~GeV^2}$

Table 1

The most recent values of the parameters t in our calculations (Unless stated otherwise).

Kitagaki et al. 1983 FNAL deuterium The dotted curve shows their calculation using ν_{μ} + n \rightarrow p + μ^{-} , Kitagaki 1983 their fit value of M_A =1.05 GeV Their calculation, $M_A = 1.05$ Our calculation, $M_A = 1.05$ They used Ga=-1.23 and Ollson Form 60 $E_{\rm vents/0.1} (GeV/c)^2$ factors 0.024 should be subtracted from their fit ٠ 40 value for modern form factors and Ga=-1.267 20 -1.267 g_A $1.1803 \times 10^{-5} \text{ GeV}^{-2}$ G_{F} 0.97400 $\cos\theta_{c}$ 0.5 2.0 2.5 1.0 1.53.0 $2.793 \mu_N$ $Q^2 (GeV/c)^2$ μ_p $-1.913 \mu_N$ μ_n $3.706 \mu_N$ Experiment M_A ΔM_A M_V^2 0.71 GeV^2 (published) new-old 1.00 ± 0.05 -0.035Miller -Table 1 $-ANL_{82,77,73}$ $1.07\,\pm\,0.06$ $D - BNL_{81}$ The most recent values of the paramete Baker --0.032 $1.05^{+0.12}$ in our calculations (Unless stated otherwi $Kitagaki - D - FNAL_{83}$ -0.024 $1.070^{+0.040}$ $Kitagaki - D - BNL_{90}$ -0.039

be correct for axial

Table 1

The most recent values of the parameters used fRo in our calculations (Unless stated otherwise).

Conclusions

With our BBBA 2007 vector form factor parameterization, our new extractions of Ma from neutrino data, and our fits to the updated values of $F_{A:}$ --> form factor uncertainties are no longer an issue in the modeling of quasi-elastic neutrino interactions.

The current uncertainties in the quasielastic cross section lie in the realm of nuclear effects.

These nuclear effects will be measured in the next generation neutrino experiment at Fermilab MINERvA

At high Q^2 , our new duality based predictions for F_A and Gen can be tested in MINERvA at Fermilab and the next generation Gen electron scattering experiments at Jlab.

