Electroweak Sector of the Standard Model

EPS Conference, HEP2007 23rd July 2007

Presented by Terry Wyatt (University of Manchester)

- With my thanks to:
 - EW parallel session organizers
 - Giuseppe Degrassi, Jorgen D'Hondt, Chris Hays
 - >40 speakers in 14.5 hours of EW parallel sessions
 - special thanks to Martin Gruenewald
 - Scientific secretaries
 - Tim Coughlin, Tammy Yang

$$e^{+} \qquad f$$

$$m_W^2 = m_Z^2 \cos^2 \theta_W = \frac{\pi \alpha}{\sqrt{2} G_F \sin^2 \theta_W}$$

- Most precisely known:
 - α , G_F, m_Z
- Add QCD: α_{s}

$$g_{(\mathrm{L,R})}^f = T_{3,(L,R)}^f - Q_f \sin^2 \theta_{\mathrm{W}}$$

Fermion	$T^f_{3,L}$	$T^f_{3,R}$	Q_f
$\left(\begin{array}{c} U\\ D\end{array}\right)$	$+1/2 \\ -1/2$	0 0	$+2/3 \\ -1/3$
$\left(\begin{array}{c}\nu_{\ell}\\\ell\end{array}\right)$	$+1/2 \\ -1/2$	0 0	$0 \\ -1$

2

- EW observables then depend on:
 - α , G_F, m_Z, m_t, m_H
- Basic programme:
 - Measure precisely L and R couplings of each fermion to γ , Z, W
 - Measure precisely boson self-interactions
 - Measure precisely α_s , α , G_F , m_Z , m_t , m_W
 - Test consistency of measurements with SM predictions
 - Find the Higgs!

Running of α

- Uncertainty dominated by $\Delta \alpha_{had}(q^2)$
 - effect of qq loops at low q²

з.

- Cannot be calculated from first principles in pQCD
- Can be related to $\sigma^{0}_{had}(s)$ by dispersion relation

Im
$$\sim \int \left| \right\rangle \sim \left| \right\rangle^2 = \Delta \alpha_{\text{had}}^{(5)}(q^2) = -\frac{q^2}{4\pi^2 \alpha} P \int_{m_\pi^2}^{\infty} \frac{\sigma_{\text{had}}^0(s) \, \mathrm{d}s}{s-q^2}$$

- Experimentally accessible by:
 - direct scans
 - radiative return

Data on $\sigma^{0}_{had}(s)$

$\Delta \alpha_{had} (M_Z^2)$

- <u>Precise</u> determination of $\Delta \alpha_{had} (M_Z^2)$ is a tricky business!
 - combination of results from many (sometimes old) experiments
 - treatment of correlated systematics, radiative corrections
 - close collaboration between expt. and theory essential!

Group	$\Delta lpha_{ m had}^{(5)}(M_Z^2)$	
Burkhardt+Pietrzyk '05	0.02758 ± 0.00035	currently used by LEPEWWG
Troconiz+Yndurain '05	0.02749 ± 0.00012	
Kühn+Steinhauser '98	0.02775 ± 0.00017	
Jegerlehner '06	0.02761 ± 0.00023	
$(s_0^2 = (10 { m GeV})^2)$	0.02759 ± 0.00017	
HMNT '06	0.02768 ± 0.00022	

<u>g-2</u>

• Hadronic corrections also dominate uncertainty in g-2

• Recent analyses confirm discrepancy at ~3.4 sigma level

-
$$a_{\mu}^{\text{expt}} - a_{\mu}^{\text{theory}} = (27.6 \pm 8.1) \cdot 10^{-10}$$

•

•

• theory uncertainty (slightly) smaller than expt.

30th June 2007: The end of an ERA!

30th June 2007: The end of an (H)ERA!

Integrated luminosity

HERA-1 HERA-2 e- ~20pb⁻¹ ~200pb⁻¹ e+ ~100pb⁻¹ ~200pb⁻¹

polarized electron beam

$$P_e = \frac{N_R - N_L}{N_R + N_L}$$

- P_e typically 30-40%

HERA-1+2 (94-05)

Results with Polarized Beams at HERA

- Directly tests the EW model at large <u>negative</u> Q²
- Still a factor ~2 more HERA-2 data to be analyzed

10

The Fermilab Tevatron Collider

1992-95 Run I: ~ 100 pb⁻¹, 1.8 TeV

Major accelerator/detector upgrades 2002-06 Run IIa: ~ 1.6fb⁻¹, 1.96 TeV

Further upgrades 2006-09 Run IIb: ~ 6-8 fb⁻¹

19 April 2002 - 15 July 2007

• ~85% data taking efficiency

Signatures of W and Z Production at the Tevatron

- Z: pair of charged leptons:
 - high p_T
 - isolated
 - opposite-charge

- W: single charged lepton:
 - high p_T
 - isolated
- E_T^{miss} (from neutrino)

transverse mass: $m_T = \sqrt{2p_T^{\ l}p_T^{\ v}(1-\cos\phi_{lv})}$

W Mass and Width from CDF

• 200 pb⁻¹ data set

51,128 $W \rightarrow \mu\nu$ candidates 63,964 $W \rightarrow e\nu$ candidates

4,960 Z \rightarrow µµ candidates 2,919 Z \rightarrow ee candidates

- Many handles to calibrate tracker and calorimeter $\ensuremath{p_{\text{T}}}$ scale and resolution

W Mass and Width from CDF

- m_w = 80413 ± 34(stat) ± 34(syst) MeV
- Major systematics:

- lepton p_T scale and resolution, QED, PDFs

CDF chooses to treat CTEQ6 error sets as 1.6σ uncertainty

W Mass and Width from CDF

1

Major systematics:

- lepton p_T resolution ~30 MeV
- recoil model ~50 MeV
- backgrounds ~30 MeV
- uncorrelated between electron and muon channels

 $\Gamma_{\rm W}$ = 2032 ± 71 (stat + syst) MeV (350 pb-1)

c.f. indirect measurement from cross sections: R =

 Γ_{w} = 2092 ± 42 MeV (stat + syst) MeV (72 pb-1)

$$\sigma \cdot BR (W \rightarrow lv)$$

 $\sigma \cdot BR (Z \rightarrow ll)$

Watch Out for the Theoretical Uncertainty!

In the hard tails of M^W_⊥ and p^ℓ_⊥ predictions including QED FSR only differ at some % level from the complete NLO electroweak calculation → important for precision W width measurement?

W Mass

Di-Boson Physics at the Tevatron

• Wγ

Photon Radiated from a W

 $\begin{aligned} \sigma(W\gamma)^*BR(W_{\rightarrow}l\nu) &= 18.03 \pm 0.65(stat) \pm 2.55(sys) \pm 1.05(lumi) \ pb \\ \textit{NLO prediction: } \sigma(W\gamma)^*BR(W_{\rightarrow}l\nu) &= 19.3 \pm 1.4 \ pb \end{aligned}$

- Data consistent with SM
 - do not yet require "radiation zero" ¹⁹

Di-Boson Physics at the Tevatron

WZ and ZZ

Expected number of signal events 9.75±0.03(stat)±0.31(sys)±0.59(lumi) Expected number of background events 2.65±0.28(stat)±0.33(sys)±0.09(lumi) Observed 16 events \Rightarrow significance 6 σ σ (WZ)=5.0^{+1.8}_{-1.6} (stat.+syst.) pb

NLO prediction: σ (WZ) = 3.7 ± 0.3 pb

ZZ→IIIII (1.5 fb⁻¹)
Very clean but very small BR
1 4-lepton event observed!
ZZ→IIVV (1.1 fb⁻¹)

<u>Combined result</u> *3σ significance*

 σ (ZZ)=0.75^{+0.71}_{-0.54} (stat.+syst.) pb

NLO prediction: σ (WZ) = 1.4 ± 0.1 pb

Top Quark Pair Production and Decay at Tevatron

Final state determined by decay of the two Ws

"lepton+jets"

- (e or μ), υ , W \rightarrow qq, two b-jets
- 30% of tt decays
- moderate background
 - \rightarrow usually yields most precise measurements

A Rich Programme of Top Physics to Explore!

Production Cross Section and Br(t→bX)

Production Cross Section and Br(t→bX)

 σ_{tt} and R consistent with SM expectations

W Helicity in Top Decays

• Test left-handed t→Wb coupling

 θ*: angle between I[±] momentum in W rest frame and W momentum in top rest frame

W Helicity in Top Decays

- Simultaneous fit:
- f₀ = 0.74 ± 0.25(stat) ± 0.06(syst)
- f₊ = -0.06 ± 0.10(stat) ± 0.03(syst)
- Fixing $f_0 = 0.7$
- f₊ = -0.06 ± 0.06(stat) ± 0.03(syst)

- Fixing $f_0 = 0.7$
- f₊ = 0.017 ± 0.048(stat) ± 0.047(syst)

Top Mass Measurement

Example Technique: Matrix Element (ME)

Form event probability P_{evt}

$$P_{evt} = f_{sgn} P_{sgn}(x; m_{top}, JES) + (1 - f_{sgn}) P_{bkg}(x)$$

• Where P_{sgn} is the probability to observe x for given values of m_{top} and JES (Jet Energy Scale calibration factor)

$$P_{sgn}(x;m_{top},JES) = \frac{1}{\sigma} \sum_{i=1}^{\infty} w_i \int_{i=1}^{\infty} T(x,y,JES) d\sigma^n(y,m_{top}) f(q_1) f(q_2) dq_1 dq_2$$

b-tag transfer from ME PDFs
weights function

- Integrate over all unmeasured quantities and experimental resolutions
- Fit simultaneously *m*_{top} and *JES*
 - using m_w constraint

Top Mass Measurement

- Is m_{top} in Monte Carlos used by experiments the same as m_{top} (pole) used in the EW fits?
 - e.g., colour reconnection effects?

Evidence for Single Top Production

- Motivation
 - Top pairs
 - can measure only ratio of couplings to kinematically allowed final states

$$R = \frac{Br(t \to Wb)}{Br(t \to Wq)} = \frac{|V_{tb}|^2}{|V_{tb}|^2 + |V_{ts}|^2 + |V_{td}|^2}$$

- Single top
 - $\sigma_{s+t} \propto |Vtb|^2$
 - |Vtb|² can be determined with assumptions of 3 generations, unitarity ³⁰

Backgrounds to Single Top

- σ_{s+t} only a factor of two lower than σ_{tt}
 - signal event signature less pronounced
 - fewer high p_T objects
- Backgrounds much more of a challenge!
- W+jets poorly understood
 - especially W+heavy flavour
 - considerable tuning of MC to data required

muon

proton bean

Jet 2 (b,q)

neutrino

Iet 1(b)

antiproton bea

Kinematic Discriminants

- Even after b-tagging signal swamped by background ullet
- Use multivariate kinematic discriminants
 - e.g., Likelihood, Matrix Element, Neural Networks, Boosted Decision Trees
- Validate on "background-enriched" sub-samples

- "W-like" (low total visible E_{T}) "tt-like" (very high total visible E_{T})

DØ Evidence for Single Top

Consistent excess seen in all three analyses

33

DØ Evidence for Single Top

- DØ Run II * = preliminary 0.9 fb⁻¹ Combined result 4.9 +1.4 pb Decision Trees $-\sigma_{s+t}$ consistent with SM 4.8 +1.6 pb -3.6σ significance Matrix Elements* -2.4σ expected significance 4.4 +1.6 pb Bayesian NNs* 4.7 +1.3 pb Combination* N. Kidoģakis, PRD 74, 114012 (2006), m_{top} = 175 GeV Z. Sullivan, PRD 70, 114012 (2004), mon = 175 GeV 5 10 15 0 $\sigma (p\bar{p} \rightarrow tb + X, tqb + X)$ [pb]
- First direct measurement of |V_{tb}|
 - Assuming standard model production:
 - Pure left-handed coupling
 - $|V_{td}|^2 + |V_{ts}|^2 << |V_{tb}|^2$
 - Additional theoretical errors needed (top mass, scale, PDF etc...)
 - Measurement does not assume 3 generations or unitarity

 $|V_{tb}| = 1.3 \pm 0.2$ or $0.68 < |V_{tb}| < 1$ at 95%CL

CDF Single Top Results

σ_{s+t}<2.7pb at 95% C.L.

No evidence of signal σ_{s+t}<2.6pb at 95% C.L.

Expected signal significance 2.0σ

Expected signal significance 2.6σ

p-value = 1.0% (2.3σ) σ_{s+t}=2.7(+1.5/-1.3)pb

Expected signal significance 2.5σ

1.2% of pseudo-experiments fluctuated as unluckily as the observed data

m_w and m_t (direct)

- Important parameters of SM
- Real interest is to compare with other information

Precision EW Data from LEP/SLC

• Asymmetries measure:

$$\frac{(g_{\rm L}^f)^2 - (g_{\rm R}^f)^2}{(g_{\rm L}^f)^2 + (g_{\rm R}^f)^2}$$

- Longstanding issue:
 - "leptonic" and "hadronic" asymmetries consistent only at ~3α level
 - (may not be resolved until the ILC!)

m_w and m_t (direct and indirect)

- Powerful consistency check of SM
- Decreasing Δm_W is the priority!

m_w and m_t (compared to m_H)

- Data prefer light Higgs
- Decreasing Δm_W is the priority!

Limits on m_H

m_H = 76⁺³³₋₂₄ GeV m_H < 144 GeV (95%CL)

Direct search limit (LEP-2): m_H > 114 GeV (95%CL) ∼

Probability M_H>114 GeV: 15%

Renormalise probability for $m_H > 114$ GeV to 100%: $m_H < 182$ GeV (95%CL)

• So let's find it!

The Crucial Observables

Fit to all measurements but excluding:

Yields $M_H < 140$ GeV (95%CL) cf $M_H < 144$ GeV (95%CL) including external $\Delta \alpha_{had}(M_Z)$

41

Searches for the SM Higgs Boson at the Tevatron

Gluon Fusion: Most interesting at intermediate to high masses

Higher cross section

- but can only distinguish from backgrounds with H→WW decay "The Higgs is underneath the needle in the haystack"

Associated Production

- Many improvements:
 - increased lepton acceptance
 - improved b-tagging
 - improved bb mass resolution

ZH→vvbb: 2 b-Tags

• New DØ search in H \rightarrow WW \rightarrow $\mu\tau$

<u>DØ Combined 1 fb⁻¹ Limit</u>

WH →WWW will help fill gap in sensitivity around m_H= 130 GeV

- Single experiment sensitivity
 - within factor 6 (4) of SM for $m_{H} = \sim 115 \text{ GeV}$ ($m_{H} = \sim 160 \text{ GeV}$)
- Many improvements in pipeline
 - more data, combine experiments, more channels, get cleverer
 - expect sensitivity to continue to improve ~L and not \sqrt{L} !
- Success with low cross section, high background SM signals:
 WZ, ZZ, single top
- Direct limits, or direct hints, from Tevatron with ~2-4 fb⁻¹?!

Outlook for EPS2009?

LHC Sensitivity

- Huge EW event samples crucial to commission detector, trigger and event reconstruction
 - in 1 fb-1
 - 250k I+jet tt events
 - 1M Z→II events

- Intense theoretical activity in this area
 - QCD is under control at 10% level
 - Need to consider EW corrections ~5-8%

Summary

- Precise EW physics requires close interplay
 - − precise experiment ↔ precise Monte Carlo ↔ precise theory
- Stay tuned for many new results from Tevatron experiments
 1 fb⁻¹ → 6 fb⁻¹
- With the start up of the LHC the next year or two will be exciting times for EW physics!
 - Longer term prospects
 - $\Delta m_t \sim 1$ GeV, $\Delta m_W \sim 10$ MeV
 - will require a heroic effort!

Outlook for EPS2009?

