Reactor neutrino experiments comparison for the measurement of θ₁₃

arXiv:0704.0498v1 [hep-ex] Guillaume Mention Th Lasserre D Motta

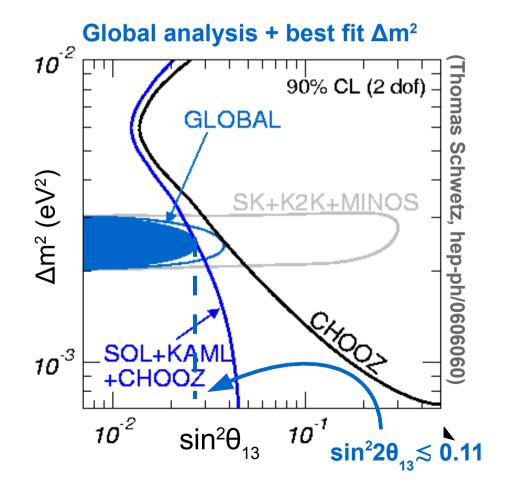
Th. Lasserre, D. Motta

CEA Saclay

HEP 2007 Thursday, July 19, 2007

Outline

- Neutrino oscillation & the mixings $\rightarrow \theta_{13}$
- Reactor experiments $\rightarrow v_e$ disappearance channel $\rightarrow \theta_{13}$


Next to come reactor experiments: Daya Bay, Double Chooz, RENO (Angra not included here)

First comparison of different experiments on a same baseline

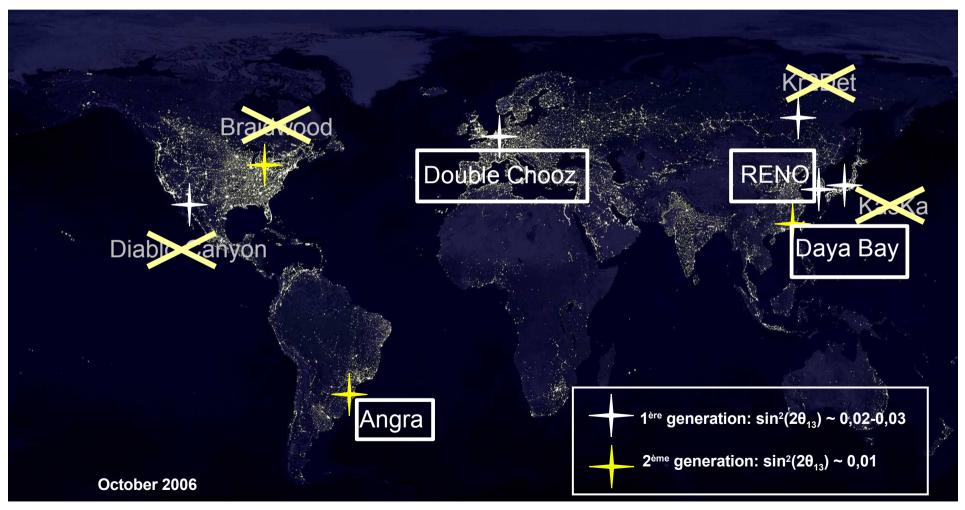
- The statistical method
- The χ^2 structure
- Computing θ_{13} sensitivity
- Inputs: Reactors Detectors Backgrounds Systematics
- Outputs: sensitivity robustness w.r.t. systematics

Neutrino oscillations & θ_{13}

$$\left| \nu_{\alpha} \right\rangle = \underbrace{U_{\alpha k}}_{U_{\text{MNSP}}} \left| \nu_{k} \right\rangle \qquad U_{\text{MNSP}} = U_{\text{atm}} \times \begin{pmatrix} \cos \theta_{13} & \sin \theta_{13} e^{-i\delta} \\ 1 & \\ -\sin \theta_{13} e^{i\delta} & \cos \theta_{13} \end{pmatrix} \times U_{\text{sol}} \times U_{\text{Maj}}^{\text{diag}}$$

$$P_{\alpha\beta}(L) = \left| \sum_{k} U_{\beta k} U_{\alpha k}^{\star} e^{-i m_{k}^{2} L/2E} \right|^{2}$$

sin²(2θ₁₃) < 0.11 @ 90 % C.L.

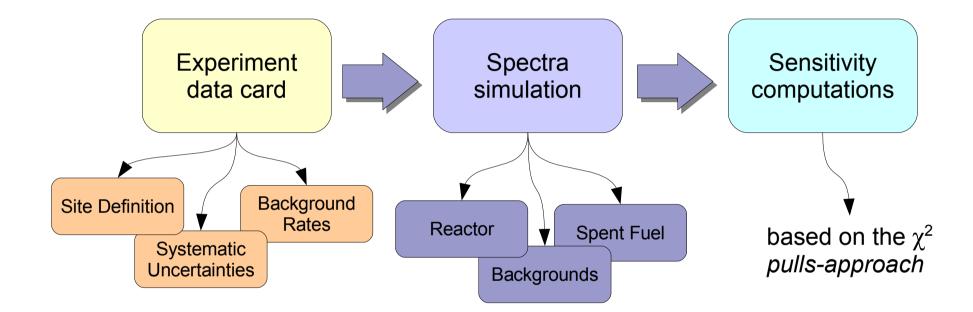

(mainly from reactor experiments)

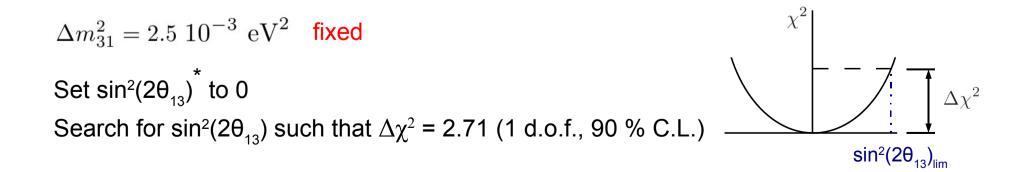
Reactor experiments & the $\bar{\nu}_{e}$ channel

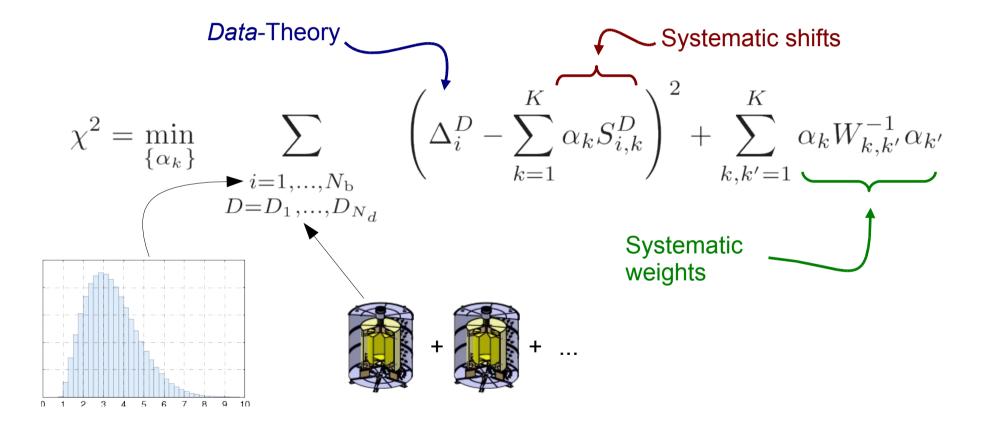
Inverse
$$\beta$$
 decay $\overline{v}_{e} + p \rightarrow e^{+} + n \rightarrow E_{e} \rightarrow E_{v}$
 $P_{ee} \simeq 1 - \sin^{2} |2 \theta_{13}| \sin^{2} \Delta_{31} - \cos^{4} \theta_{13} \sin^{2} (2 \theta_{12}) \sin^{2} \Delta_{21}$
 $A_{31} = \frac{\Delta m_{31}^{2} L}{4E}$ $\Delta_{21} = \frac{\Delta m_{21}^{2} L}{4E}$ $\overline{E} \simeq 4 MeV$
 $A_{31} = \frac{\Delta m_{31}^{2} L}{4E}$ $\Delta_{21} = \frac{\Delta m_{21}^{2} L}{4E}$ $\overline{E} \simeq 4 MeV$
 $P_{ee} \simeq 1 - \sin^{2} |2 \theta_{13}| \sin^{2} \Delta_{31} - \cos^{4} \theta_{13} \sin^{2} (2 \theta_{12}) \sin^{2} \Delta_{21}$
 $P_{ee} \simeq 1 - \frac{1}{2} \sin^{2} (2 \theta_{13}) - \cos^{4} \theta_{13} \sin^{2} (2 \theta_{12}) \sin^{2} \Delta_{21}$
 $P_{ee} \simeq 1 - \frac{1}{2} \sin^{2} (2 \theta_{13}) - \cos^{4} \theta_{13} \sin^{2} (2 \theta_{12}) \sin^{2} \Delta_{21}$
 $A_{12} = 7.2 10^{5} \text{ eV}^{2}; \cos \theta_{12} = 0.8; \sin \theta_{13} = 0.23$
 $A_{12} = 7.2 10^{5} \text{ eV}^{2}; \cos \theta_{12} = 0.8; \sin \theta_{13} = 0.23$
 $A_{12} = 7.2 10^{5} \text{ eV}^{2}; \Delta m_{23}^{2} = 2.0 10^{3} \text{ eV}^{2}$
 $A_{12} = 7.2 10^{5} \text{ eV}^{2}; \Delta m_{23}^{2} = 2.0 10^{3} \text{ eV}^{2}$
 $A_{12} = 7.2 10^{5} \text{ eV}^{2}; \Delta m_{23}^{2} = 2.0 10^{3} \text{ eV}^{2}$
 $A_{13} = 2.5 10^{3} \text{ eV}^{2}; \Delta m_{23}^{2} = 2.0 10^{3} \text{ eV}^{2}$
 $A_{12} = 7.2 10^{5} \text{ eV}^{2}; \Delta m_{23}^{2} = 2.0 10^{3} \text{ eV}^{2}$
 $A_{13} = 2.5 10^{3} \text{ eV}^{2}; \Delta m_{23}^{2} = 2.0 10^{3} \text{ eV}^{2}$
 $A_{13} = 2.5 10^{3} \text{ eV}^{2}; \Delta m_{23}^{2} = 2.0 10^{3} \text{ eV}^{2}$
 $A_{12} = 7.2 10^{5} \text{ eV}^{2}; \Delta m_{23}^{2} = 2.0 10^{3} \text{ eV}^{2}$
 $A_{12} = 7.2 10^{5} \text{ eV}^{2}; \Delta m_{23}^{2} = 2.0 10^{3} \text{ eV}^{2}$
 $A_{13} = 2.5 10^{3} \text{ eV}^{2}; \Delta m_{23}^{2} = 2.0 10^{3} \text{ eV}^{2}$
 $A_{10} = \frac{10^{5} \text{ eV}^{2}; \Delta m_{23}^{2} = 2.0 10^{3} \text{ eV}^{2}$
 $A_{10} = \frac{10^{5} \text{ eV}^{2}; \Delta m_{23}^{2} = 2.0 10^{3} \text{ eV}^{2}$
 $A_{10} = \frac{10^{5} \text{ eV}^{2}; \Delta m_{23}^{2} = 2.0 10^{3} \text{ eV}^{2}$
 $A_{10} = \frac{10^{5} \text{ eV}^{2}; \Delta m_{23}^{2} = 2.0 10^{3} \text{ eV}^{2}$
 $A_{10} = \frac{10^{5} \text{ eV}^{2}; \Delta m_{23}^{2} = 2.0 10^{3} \text{ eV}^{2}$
 $A_{10} = \frac{10^{5} \text{ eV}^{2}; \Delta m_{23}^{2} = 2.0 10^{3} \text{ eV}^{2}$
 $A_{10} = \frac{10^{5} \text{ eV}^{2}; \Delta m_{23}^{2} = 2.0 10^{3} \text{ eV}^{2}; \Delta m_{23}^{2} = 2.0 10^{3} \text{ eV}^{2}$
 $A_{10} = \frac{10^{5} \text{ eV}^{2}; \Delta m_{23}^{2} = 2.0 10^{3} \text{ eV}^{2}; \Delta m_{23}^{2} =$

The remaining four

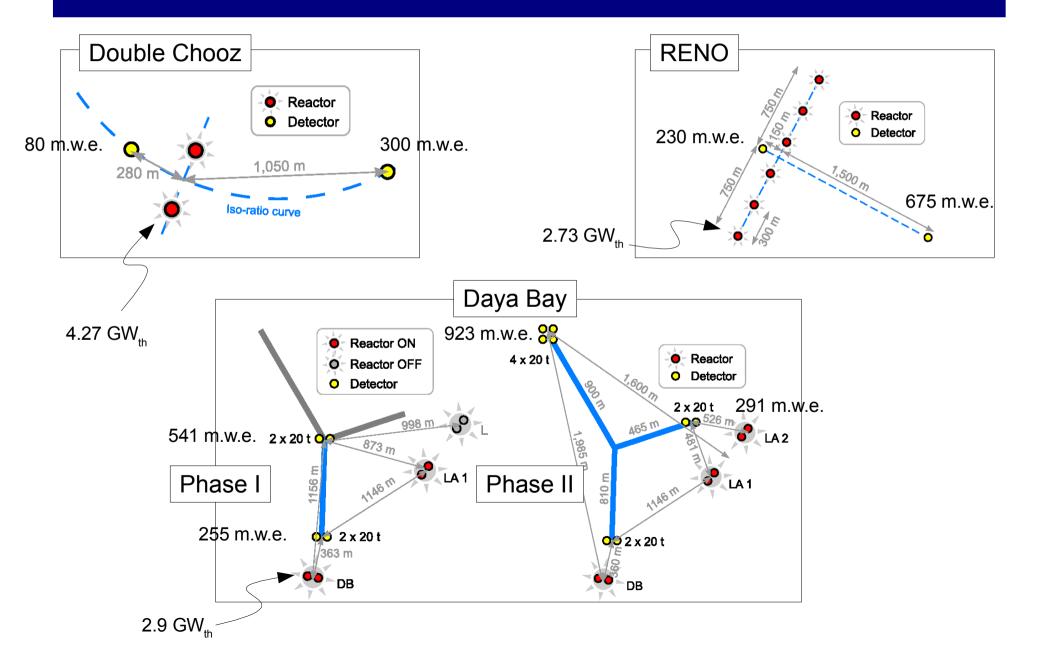
From 2001 to 2007



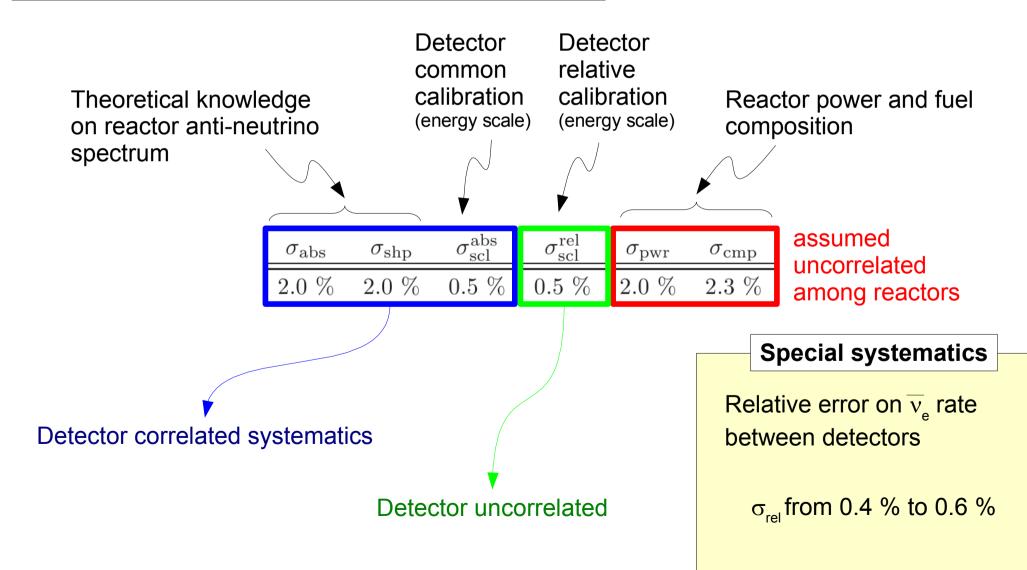

The remaining four


=> Statistical and systematical errors \rightarrow below the percent

The 1st common comparison – The Method



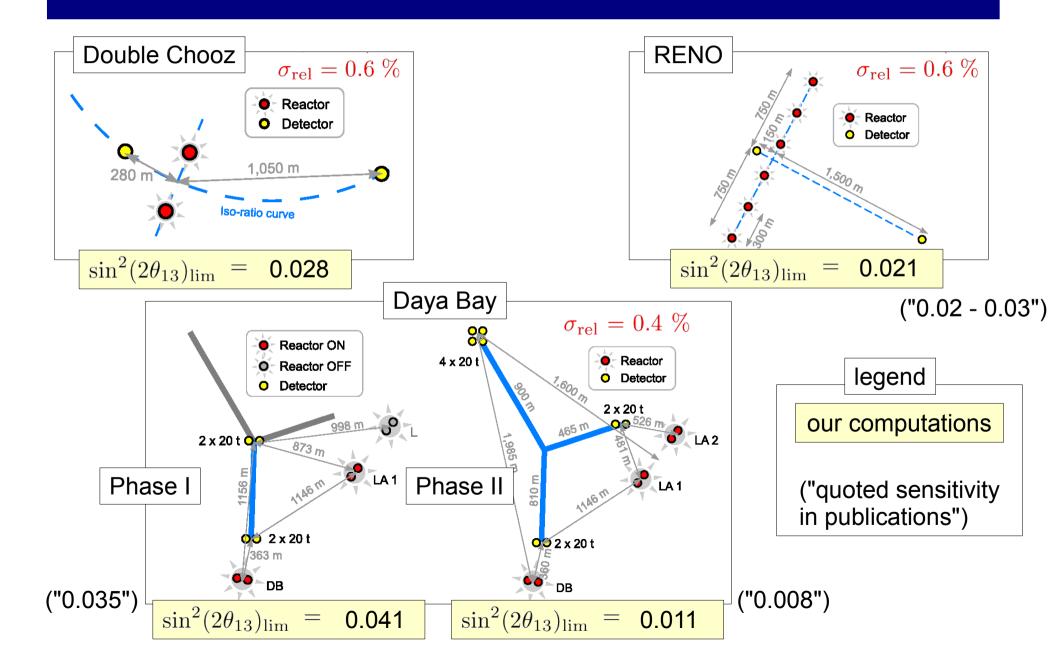
The χ^2



The inputs: experiment site setups

The inputs: Systematics

Common systematics used for all the experiments

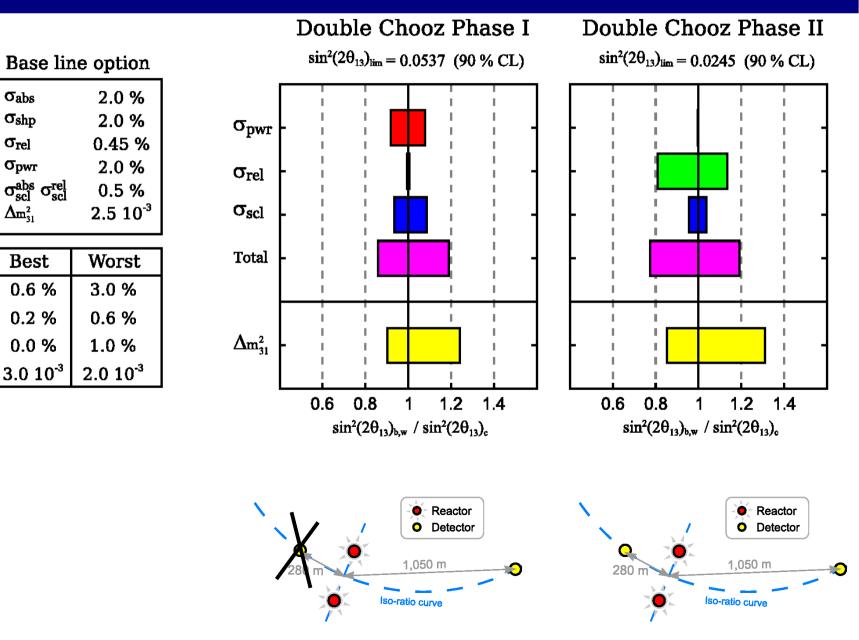


The inputs: Backgrounds rescaling

Site	depth (m.w.e.),	Detailed sir	nulation	Analytical	model	DSF	-	5	Double Chooz near
	topology	${\Phi_{\mu} \over m^{-2} s^{-1}}$	$\langle E_{\mu} \rangle$ GeV	${\Phi_{\mu}}{\mathrm{m}^{-2}\mathrm{s}^{-1}}$	$\langle E_{\mu} \rangle$ GeV		tor	2	
DC near	80, flat	5.9	22	9.9	17	6.80	sct	2	Daya Bay near 1
RENO near	230, hill			1.2	40	1.57	Fac	1	RENO near Daya Bay near 2 Double Chooz far
DB near 1	255, hill	1.2	55	0.9	44	1.32	Scaling	1	
$DB\ \mathrm{near}\ 2$	291, hill	0.73	60	0.72	49	1.06	lin	E	
DC far	300, hill	0.61	61	0.67	50	1	Ca.	0.5	
DB mid	541, hill	0.17	97	0.15	71	0.32	Š	t	Daya Bay mid
RENO far	675, hill			0.084	94	0.20		ľ	RENO far
DB far	923, hill	0.04	138	0.035	118	0.10	_	0.2	Daya Bay
								0.1	

Detector	Acciden	tal (d^{-1})	μ -induced f	East-n (d^{-1})	μ -induced ${}^9\mathrm{Li}/{}^8\mathrm{He}~(\mathrm{d}^{-1})$	
Site	Original	DC ext.	Original	DC ext.	Original	DC ext.
Double Chooz near		13.60 ± 1.36		1.36 ± 1.36		9.52 ± 4.76
RENO near	—	7.10 ± 0.71	—	0.68 ± 0.68	_	5.40 ± 2.70
Daya Bay DB	1.86 ± 0.19	5.98 ± 0.60	0.50 ± 0.50	0.57 ± 0.57	3.7 ± 1.85	4.55 ± 2.27
Daya Bay LA	1.52 ± 0.15	4.76 ± 0.48	0.35 ± 0.35	0.45 ± 0.45	2.5 ± 1.25	3.63 ± 1.81
Double Chooz far	2.00 ± 0.20		0.20 ± 0.20		1.40 ± 0.70	
Daya Bay mid	_	1.45 ± 0.14	—	0.14 ± 0.14	—	1.10 ± 0.57
RENO far	—	0.90 ± 0.09	—	0.09 ± 0.09	—	0.69 ± 0.35
Daya Bay far	0.12 ± 0.01	0.44 ± 0.04	0.03 ± 0.03	0.04 ± 0.04	0.26 ± 0.13	0.33 ± 0.17

Baseline sensitivity


Pulls analysis: Relative contribution to χ^2

	$\chi^2 = \prod_{\{i\}}$	\min_{α_k}	$i=1 \\ D=D_1$	$\sum_{\substack{,\ldots,N_{\mathrm{b}}\\ \dots,D_{N}}}$		Δ_i^D –	$\sum_{k=1,\ldots,K}$	$\left(\alpha_k S_{i,k}^D\right)^2 + \sum_{k=1,\dots,K} \alpha_k W_{k,k'}^{-1} \alpha_{k'}$
	$\delta\chi_i^2$ in %	DC I	DC II	DB Mid	DB Full	RN		
residuals	$\delta \chi^2_{N_1}$		$3.0 \ \%$	4.3 %	1.2~%	$1.5 \ \%$		Contribution of the
sid	$\delta \chi^2_{N_2}$	_			$3.0 \ \%$			
re	$\delta \chi_F^2$	29.6~%	37.8~%	23.5~%	30.6~%	$34.5 \ \%$	J	"weigths" of the
	$\delta \chi^2_{ m abs}$	29.6~%	$1.5 \ \%$	$9.0 \ \%$	$1.0 \ \%$	7.9~%		systematics to the χ^2
	$\delta \chi^2_{ m shp}$	18.6~%	$1.3 \ \%$	8.3 %	0.6~%	$1.0 \ \%$		
	$\delta\chi^2_{ m rel}$		48.4~%	$6.5 \ \%$	56.6~%	28.4~%		
s	$\delta \chi^2_{ m scl,abs}$	6.8~%	1.2~%	$6.1 \ \%$	0.1~%	0.1~%		
pulls	$\delta \chi^2_{ m scl,rel}$		$5.1 \ \%$	11.8~%	$1.8 \ \%$	0.2~%		
	$\delta\chi^2_{ m bkg}$	1.1~%	0.8~%	0.4~%	0.2~%	0.5~%		
	$\delta \chi^2_{\rm pwr}$	13.6~%	0.8~%	27.3~%	4.4~%	16.8~%		
	$\delta \chi^2_{ m cmp}$	0.1~%	0.0~%	0.6~%	0.1~%	9.0~%		
	$\delta\chi^2_{arepsilon}$	0.6~%	0.0~%	2.2~%	0.4~%	0.0~%)	
	$\sin^2(2\theta_{13})_{\rm lim}$	0.0544	0.0278	0.0410	0.0110	0.0213		

•Allows to stress out systematics which affect the most the $\theta_{_{13}}$ sensitivity

- Reactor power uncertainties
- Detector relative normalization uncertainties
- Detector energy scales

Sensitivity robustness w.r.t. systematics Double Chooz

σ_{pwr}

 σ_{rel}

 $\sigma^{
m abs}_{
m scl}$

 Δm_{31}^2

 $\sigma_{\rm scl}^{\rm rel}$

Sensitivity robustness w.r.t. systematics **Daya Bay**

σabs

 σ_{shp}

 σ_{rel}

σрит

 Δm_{31}^2

σ_{pwr}

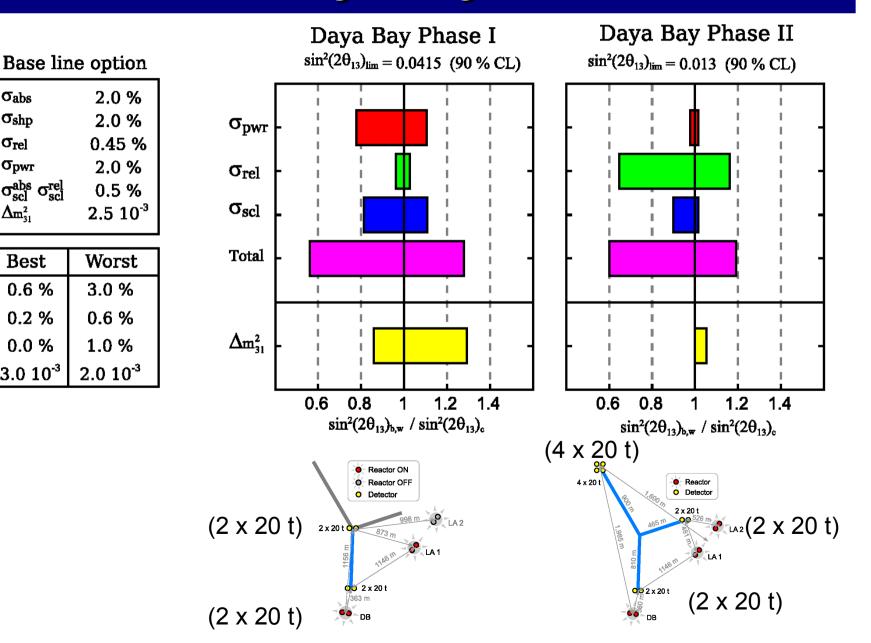
 σ_{rel}

 $\sigma^{
m abs}_{
m scl}$

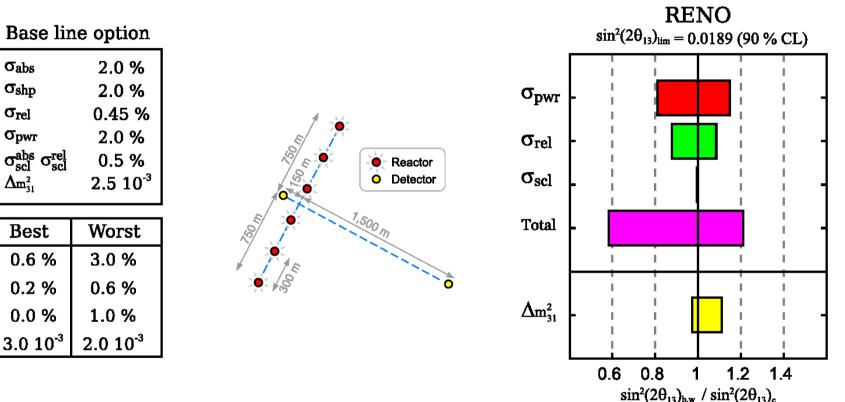
 Δm_{31}^2

 $\sigma_{\rm scl}^{\rm rel}$

Best


0.6 %

0.2 %


0.0 %

3.0 10⁻³

 $\sigma_{scl}^{abs} \sigma_{scl}^{rel}$

Sensitivity robustness w.r.t. systematics **RENO**

σabs

 σ_{rel}

 Δm_{31}^2

σ_{pwr}

 σ_{rel}

 Δm_{31}^2

 σ_{scl}^{abs} σ_{scl}^{rel}

Global conclusion

arXiv:0704.0498v1 [hep-ex]

- → 3 first generation experiments: Double Chooz, RENO sensitivity ~ 0.02 to 0.03 (depending on sytematics, Δm² value, and backgrounds) and Daya Bay Phase I with sensitivity ~ 0.04 to 0.05 (1 year) ~ 0.03 to 0.035 (3 years)
- A second generation experiment: **Daya Bay** with forseen sensitivity ~ 0.01.
- → To go below 0.01 with reactor experiments seems difficult.

Specific conclusion

First generation

- → Double Chooz: ~ 0.02-0.03
 - → Few reactors, good relative power. Overburden sufficient.
 - → Detector locations => insensitive to fuel composition and power uncertainties of the cores; Full performence of the far detector position (for $\Delta m^2 > 2.5 \ 10^{-3} \ eV^2$) for a 0.02-0.03 sensitivity.
 - → To go below 0.01, one need to go farther...
- → RENO: ~ 0.02-0.03
 - → Good site: overburden/available power.
 - Core locations = disfavorable (same sensitivity with only the 2 central cores of the NPP)
 - → Sensitive to fuel composition and power uncertainties of the cores (even with 3 small detectors of 200-300 kg).
 - \rightarrow => even with 2 x more events than DC, same field of sensitivity as DC.
- → Daya Bay Phase I (?): ~ 0.03-0.05 (1 to 3 years?)
 - → Clearly suffers from the NPP cores spread.
 - Sensitive to a lot of systematics => sensitivity will rely on difficult analyses, estimations of all these
 systematics
 - → 2 x 40 tons is already a large experiment...!

Specific conclusion

Second generation

→ Daya Bay: ~ 0.01

- Very good site for its overburden
- The power appealing is a lure especially for Daya Bay Phase I: the 2 cores of Daya Bay alone (w/o LA I) gives a better sensitivity
- → It remains some impact of the uncertainty on the NPP core powers on the sensitivity