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Abstract

We study the evolution of the coupled scalar and fermion fields within the classical field theory. We examine the\case of
coupled fields in(1 + 3)-dimensional space. The general expressions for the fields distributions are obtained. The particular
case of two fields iri1 + 1)-dimensional space is carefully studied. We obtain the expressions for the averaged fields intensities
and show that in the relativistic limit they are similar to the usual transition probabilities formulae of neutrino oscillations.
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The particle mixing plays an important role in ele- three neutrino flavors. Recently we obtained the strong
mentary particle physics. According to the experimen- evidence in favor of neutrino oscillations and, there-
tal data the particle mixing exists in both quark and fore, mixing (see, for instance, R¢d]). For example,
lepton sectors of the standard model. The idea of mix- neutrino oscillations are likely to be the most plausi-
ing among the two quark flavors was put forward in ble explanation of the solar and atmospheric neutrino
Ref.[1] to explain the baryons decays. The mixing in problems.
the leptonic sector of the standard model was proposed  In Ref.[2] the neutrino oscillations were examined
in Ref. [2]. In that parer the neutrino mixing and os- within the quantum mechanical approach. Schrddinger
cillations were studied on the analogy of the known like differential equation for the description of the
at that timek° < K© oscillations. Then in Ref]3] two-level neutrino system was proposed. On the basis
this approach was generalized on the mixing between of this equation one can derive the famous transition

probability formula,
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where 6y, is the vacuum mixing angleam? is the determined by the velocities and polarizations of back-
mass squared difference aiitlis the energy of the  ground fermions as well as the electromagnetic field
system. Up to now Eq1) is of use in numerous phe-  strength.

nomenological studies of neutrino oscillations. How- The method involving the Bloch equation for the
ever more profound analysis of particle mixing and treatment of neutrino flavor oscillations was proposed
oscillations is necessary. The approach to the oscilla- in Ref.[20]. If one considers the evolution of two neu-
tions phenomenon based on the field theory methodstrinos system (e.gy. andv,,), it is possible to intro-

should be elaborated. duce the “polarization” vectoP = Tr(o p), whereo
In the last decade a great deal of studies on the field are the Pauli matrices ands the 2x 2 density matrix.
theoretical substantiation of E¢L) were carried out. If neutrinos propagate in vacuum, the vec®mwas

First of all it is necessary to mention works by M. Bla- shown to precess without loss of length according to
sone and G. Vitiello and their collaborators (see Refs. the Bloch equation. The appearance of classical effects
[5-8]). In these papers the authors made the com- in various quantum systems (including the analysis of
prehensive analysis of the fermion and boson mixing a two-level system with help of the Bloch equation)
transformations using the methods of quantum field was discussed in Ref21]. Thus basing on the sim-
theory. It was demonstrated that the vacuum structure ilarity in the description of neutrino spin and flavor
of mass eigenstates is not equivalent to one of fla- oscillations we suppose that classical theory methods
vor eigenstates. The quantum mechanical formula for could have been applied for the treatment of the fla-
the transition probability was also reproduced. More- vor oscillations. However this supposition should be
over some corrections, which result from more care- substantiated by the direct calculations that show the
ful quantum field theory analysis, were obtained. In classical theory yields at least the same results as the
Ref. [9] the group theoretical aspects of neutrino os- quantum one.
cillations were discussed. Analogous approach to de- In this Letter we study the evolution of the cou-
scription of the neutrino oscillations was developed in pled scalar as well as fermion fields within the context
Refs.[10,11] of classical field theory. The main goal of our arti-
Rather appreciable contributions to the investiga- cle is to demonstrate that neutrino oscillations can be
tion of the flavor neutrino oscillations were made in described within the classical approach. The classi-
Refs.[12,13] In those papers the wave packages treat- cal approach was also adopted since we should not
ment of neutrino oscillations was developed as well be puzzled by a problem: must we rely on flavor or
as the discussion of the neutrino oscillations phase is mass eigenstates in our treatment of neutrino oscilla-
presented. The neutrino oscillations phase was alsotions? The intensive discussion about this topic takes
studied in Ref[14]. A very interesting approach to place in Refs[13,22] The case ofV coupled fields
the description of the neutrino flavor oscillations was in (1 + 3)-dimensional space is examined. We solve
proposed in Refl15]. In that paper the covariant path  the Cauchy problem for this system, i.e., for the given
amplitudes method was applied for the analysis of the initial conditions we find the fields distributions for

neutrino oscillations phase. any time point. In order to analyze the obtained ex-
Recently we elaborated the quasi-classical ap- pressions we study the particular case of two fields in
proach for the description of spin (see R¢i6-18) (14 1)-dimensional space. For the specific initial con-

and flavor neutrino oscillations (see REf9]). It was ditions the expressions for the averaged fields intensi-
shown that neutrino oscillations in moving and po- ties are obtained. We also show that in the relativistic
larized matter under the influence of arbitrary elec- limit they are similar to the usual transition probabil-
tromagnetic fields were described by the generalized ities formulae of neutrino oscillations in vacuum. It is
Lorentz invariant quasi-classical Bargmann—Michel- interesting to mention that the expressions for the av-
Telegdi equation. It is interesting to note that the equa- eraged fields intensities are identical for both bosons
tion describing the precession of the neutrino three- and fermions.

dimensional spin vector (neutrino spin in particle’s rest First let us discuss the case of arbitrary cou-
frame) is the usual Bloch equation. We demonstrated pled scalar fields. For simplicity we suppose that these
that neutrino spin rotates around a certain direction fields are the real ones. The Lagrangian for this system
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is expressed in the following form

N N
L@)=Y_ Lolg)+ Y gikgitr,

(2)
k=1 i,j=1
ik
where g;; are the coupling constant®, = (¢1, ...,
¢n), and
1 m?2
Lolpi) = 50u 010" o1 — -1 07, 3)

is the Lagrangian for the fielg (r, ) at the absence
of the additional couplingy; is the mass correspond-

ing to this field. It is necessary to note that the second

term in Eq.(2) is assumed to be an interaction between
fields gx.

In order to describe the evolution of the systét)
(3) we should set the Cauchy problem for this system.
For the initial conditions,

@i(r,0) = fi(r), @i(r,0)=g;(r), 4)

where f;(r) and g;(r) are the given functions, one
should find the fields distributions (r, ¢) for any time
point.

It is always possible to diagonalize the Lagrangian
(2) with help of the transformation,

N
Qi(r )=y M (r,1).

k=1

Thus the Lagrangian expressed in terms of the fields

u(r, t) takes the form

N
Lu)=" Lo(ur),

k=1
whereLo(uy) is the Lagrangian for the field (r, ),

1 m?
Louk) = 50uuid ux — —Fu,

and my are the corresponding masses. It should be p,(r, 0) =0,
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the form

d® :
up(r, 1) = /(Zn—p)B[a,j(p)e_‘gk’

+ a]:(p)eig"t]eipr,

®)

where&, = ,/p? + m,f andaki(p) are the Fourier co-

efficients. Note thadz,f(p) are thec-numbers.
To solve the Cauchy problem we introduce the
functions

N
Fe() =) (M), /i),

i=1

N

Gr(r) =Y (M~Y) 8 ().

i=1
These functions are the initial conditions for the fields
ug. Then one should pick out the coeﬁicien}‘;&(p) o)
that to satisfy the initial condition@l). From Eqs(4)
and (5)we obtain

1 G
at(p) = §<Fk(p> i g(p)),

where Fi(p) and G (p) are the Fourier transforms of
the functionsFy(r) and G(r), respectively. Finally
we receive the fields distributions;(r, ) in the ex-
plicit form

N
wir.n =) Mu(M~),
ik=1

X fd3r/[Dk(r —r', 0 fi(r))

+ Di(r — 1", 1)gi(r"], (6)
where
dc®p ., Sin&t
D — ipr 7
k(r, 1) o & )

is the Pauli-Jordan function. It is interesting to list
some of the properties of the Pauli-Jordan function

Di(r,0) = 83(r),

noted that these masses differ from the masses of the ..

fields ¢. The fieldsu,(r,t) are usually called mass
eigenstates in contrastg(r, 1).

One can write the differential equations for the
fields ug(r,¢). It is the system of the usual homoge-

Dy (r,0)=0.

It is worth noticing that the initial conditions in
Eq. (4) are consistent with these properties of the
Pauli—Jordan function. We also mention that the Pauli—

neous Klein—Gordon equations. Their solutions have Jordan function can be expressed in the explicit form
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(see, e.g., Ref23]),

1
Di(r. 1) = Zs(t)S(sz) - —ZTkSe(t)G(sz)Jl(mks),
(8)

wheres? =12 —r2 and
1,

8“)2{%1 0

are the step functions. Thus E¢8) and (7)represent
the exact solution of the Cauchy problem for arbitrary
functions f; (r) andg; (r).

The integrals calculation in E{6), however, are
rather awkward in general + 3)-dimensional space.
Thus let us, for simplicity, consider the space with 1
1 dimensions. Instead of Ey) we have

t>0,
t <0,

s >0,
s <0

e(s)z{

" ing
. SINCit
Dk(x,t):/ﬁe’pxg—k.

Now & =,/ p2+ m,f One can also obtain the Pauli—
Jordan function in the explicit form (see E)) in
(1+ 1)-dimensional space,

9)

(10)

1
D(x, 1) = 50(s°) Jolmcs),

Di(x, 1) =18(s%) — m?’;te(sz)h(mks).

Heres2 =12 — x2.
We suppose that; (x) = 0 and fi (x) # 0. Then we

receive (see also R4R4])

N
pi(x.)=> Mp(M™),

ik=1

1
X {E[fi(x—t)+fi(x+t)]

X+t J
mkt/d £ 1(mk5)}

It should be noted that if functiong;(x) #0 in a
bounded region andj; (x) — 0, whenx — 400 then
the second term in E11)is the vanishing one and

(11)

1
¢jx. 0= S[fix =D+ fi(x+D].
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This property of the Klein—-Gordon equation was also
mentioned in Ref[24]. The described feature has one
interesting physical implication. If a single particle ap-
pears far from a detector, then its field distribution is
localized in space. When a particle begins propagating
towards a detector its field distribution approaches to
the initial conditions. Thus the effect of various non-
trivial phenomena (like conversion, or oscillations,
from one field type to another) will be vanishing.

Now let us choose the initial conditions. We sup-
posefi(x) =0 and

4

v oL’

whereL is the “volume” of the space. Note th@itis
just the normalization factor. In this case we can cal-
culate the integral in Eq11) explicitly

fa(x) = lein(%x), A=

X+t

fdysin(gy) J1(ms)

2 S

x—t
_ [ w J t J t
_nS|n<§x> 1/2<§ﬁ1) 1/2<§ﬁ2),

where

p w? 2 13
=,/ —+m —.
1,2 4 + 2

In computation of the integral in E¢12) we used the
expression

cogb~/a? — x2)

[

0

(12)

Jy(cx)

—X

Ju/2[ (Vb2 +c2 - b)]
x Jv/z[%(\/bz—-l-cszb)}.

One half-order Bessel function can be expressed in
terms of the elementary function. Namely,

[2 .
J12(2) = ﬂ—zsmz.

Let us consider the case whenhas great values
compared to the masses; 2: w > m1 2. This situa-
tion corresponds to the high energy approximation or
relativistic “particles”. Then, the parametess, take

(13)
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the form
(14)

The field distributionps (x, 0) is equal to zero. Thus
we can describe the dynamics of this field for the sub-
sequent points of time. If one studies the evolution
of two fields, g1 2(x, 1), it is possible to parameterize
the matrixM jx with help of one angle

cosf  sing
Mjk_(—sin@ cos@)'

Using Egs.(12)—(15)we can rewrite Eq(11) in the
following way

p1(x,1) =2Asin® sin(%x> sin(%z)

i) o (n ~ )|
x cos[é(m% + m%)]

(15)

(16)
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Finally we obtain the expression fat(¢) in the fol-
lowing form,

2
P(t) = sinf 20 siﬁ(%t)
2., .2
x {1 — sinz(wt

where we introduced the common notatiom? =
m? — m3.
It is necessary to identify the parameter. We can-
not directly equate it to the particle enerdy,= hw,
since we are using the classical approach here. More-
over, the chosen “wave functionfa(x) ~ sin(wx/2),
does not correspond to a definite momentum and thus
to a definite energy. However we can calculate the av-

eraged energy density of the system,

1(/df2)\?
(PE)=<§{(£) +m§f22(x)}>.

Here we suppose thgfi(x) = 0. Using Eq.(18) in

(17)

(18)

Now let us discuss the field measurement process. relativistic limit (w >> m1 ) we obtain that

In case of rapidly varying fieldse(>>> m1 ), a de-

tector registers not the field strength, but the intensity (o) = @

of the field which is proportional to the field strength
squared] ~ ¢2(x, t). Moreover a detector has limited
sensitivity, i.e., it cannot register arbitrary field varia-

L b
and we can identifyo with the energy of the system.
Thus the first term in Eq(17) is similar to the well-

tion in time and in space. Thus we should average the known formula for the transition probability in the two
intensity over the characteristic time and space scales.neutrino system. It is interesting to mention that the
These scales should be greater than typical time andsecond term in Eq(17) contains the harmonic oscil-

space scales of the field in question, i.gp1
To calculate the mean value of the intensity one
should take into account the expressions

()33

and
(s =) ]) = | =) |
<C0§[i(m%+m%)]> _ co§[$(m§+m%)],

since (m2 + m3)/w < w. Then we should introduce

the normalized intensity of the fieleh (x, ) according

to the formula

(1)(®)
92

P() =

lations with the frequencymf + m%)/4w. Analogous
additional term was obtained in Ref8-8] and was
treated as the quantum field theory correction to the
Eqg. (1). However our approach demonstrates that this
term appears when one uses classical field theory. It
results from the accurate account of the Lorentz in-
variance.

Now let us discuss the case of the coupled fermion
fields. The Lagrangian for this system is expressed in
the following way

N N
L) = ZCO(Vk) + < Z gikViVk + h.C.),
k=1 i,j=1
i>k
wherev = (v, ..., vy), and

Lo(vg) = f)k(i}/ﬂf)u — mk)vk.
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We again should set the Cauchy problem for the sys- is the Pauli-Jordan function for a fermion field (see,
tem of differential equations in question. However e.g., Ref.[25]). In deriving of Eq.(21) we used the
here one has to impose only one initial condition since orthonormality conditions

Dirac equation is the first-order differential equation, T
ug(P)ur(P) = vg (P)vr(P) = dsr,
il 0) = £i1). 9wl @ (—p) = ! s (—p) =0,
Analogously to the case of the scalar fields we can in-

_ and the formulae for the summation over the spin in-
troduce the mass eigenstates,

dexes
N
tay_ PEM o
Vi)=Y Mige(r.1). 2 us(ug (o = 2,0
k=1 §
The Lagrangian expressed in terms of the mass eigen-z vs(k)v;r(k) = 4 _g” T
states has the form, s 2p
N It is interesting to mention that the functidf(r, 7)
L@ =D Lo(n). has the following property,
k=1

Si(r,0) =iy%3(r).
where
Thus the solution given in Eq21) is consistent with

LoW) = v (iy" 8y — mi) Y the initial condition(19). Eq. (21) can be rewritten in
the non-covariant form which is, however, more con-

is the Lagrangian for the fields(r,7). Note that ) .
venient for the further analysis,

masses;, differ from the masses of the fields.

The solution of the Dirac equations for the mass N
eigenstates fields can be expressed in the following v;(r, 1) = Z Mjk(M*l)ki
way, ik=1
1.0 = [ o e ) {_/ T @VODAr =105
’ (27T)3/2 ) S
+ by (—p)vs (—p)e’ ' e, (20) + / &’ De(r — 1/, & (1)

Hereu,(p) andv,(p) are the basis spinors,(p) and . 3, ) )

by (p) are the indeterminate functions. —lmkﬂfd rDp(r —r', 0§ (r )}’ (22)
Now we should find the values of the(p) and ]

bs(p) c-number functions to satisfy the initial condi- Where we use common QOtat'O”S for the gamma ma-

tion given in Eq.(19). The calculations are analogous iXes,a =y yandg=y~.

to the previously discussed case of the coupled scalar  Just for simplicity we again discuss the case of two

fields. Thus we arrive to the solution of the Dirac equa- coUPled Dirac fields in the space with+11 dimen-

tions which are valid for arbitrary functiors(r), sions. Dirac equation ifiLl+ 1)-dimensional space was
carefully studied in Refs[26—28] The gamma ma-

N .
trixes have the form
-1 ’
v,-(r,t)=§ Mj(M™),,

& S (r' —r, 0 (=iy0)& ), (21
Xf k( )( v )E ™. @Y Now one should set the initial conditions. Let us
where assume that1(x) = 0 andéx(x) is expressed in the

following way,
Sk(r, 1) = (iy" 0, + mi) Di(r, 1),

1 /coqwx/2)
xt=(t,r), E2(x) = > <sin(a)x/2) ) . (24)
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We obtained the expression for the evolution of the

M. Dvornikov / Physics Letters B 610 (2005) 262—-269

The measurable quantity of the classical Dirac field

v1(x, ) which accounts for the exact dependencies on is the intensity. It is proportional to thpi(x, )2
the particles masses. However it appeared to be ratherHowever we again should average the intensity over
awkward. Nevertheless it can be shown that the third space and time. Thus, using E@7) we obtain for

term in Eq.(22) is negligible in(1 + 1)-dimensional

space. Indeed, let us consider, for instance, the integral

+00
I(x,1) = / dy Dy (x —y,t)sin(%y) (25)

We remind that the Pauli-Jordan function(ih+ 1)-
dimensional space is given in E@). The integral in
Eq. (25) can be calculated explicitly and expressed in
the form

e sin(“’ )Sin(m/m,%-l— (0/2)?)
X,1) = —X .
2 Jm2 + (@/2)?

Here we used the known value of the integral

(26)

a . i 2

Thus in the high energy approximatios & my) we
obtain that/ (x,7) — 0. It is also interesting to note
that one should carefully follow the order of integra-
tion and differentiation while using the Pauli—Jordan
function. Indeed using, for example, Eq40)—(12)
and (26)we can see that

+00 +0o0
d 9
E/dek(x,t)f(x);efdngk(x,t)f(x),

—00 o0

because Pauli—Jordan function is the singular one.
Finally we get the expression for the(x, ),

vi(x,t)=sinX [sin(%t) + cos(%t)]

x sin[t( 2 _ m%):| co{&(m% + mg)]

coqwx/2)
(Sin(a)x/Z) ) ’ @7)
In deriving of Eq.(27) we used the fact that
ad x 0
aDk(XJ):—?EDk(XJ)- (28)

(I)(¢) the following expression
2
(I)(r) = sirt 20 siﬁ(%t)

2 2
X {1—sin2<wt)},
dw
which coincides with the similar expression derived
for the scalar field. Note that Eq29) again con-
tains the additional term oscillating with the frequency
(m2 +m3) /4.

The calculations performed in this Letter demon-
strate (especially E¢29)) that neutrino flavor oscilla-
tions can be treated in frames of the classical theory.
According to the classical field theory approach the
evolution of flavor neutrinos is described in the fol-
lowing way.

(29)

(1) Flavor neutrino emission in a reaction. This
process can be described by means of the quantum
approach. However here we should obtain the final
field distribution rather than the emission probability.

It is also possible to admit that the mixture of the neu-
trino flavors appears in a process, as it was proposed
in Ref. [22]. In this case one should set other initial
conditions in Eqs(4) and (19)

(2) Neutrino propagation towards a detector. One
can successfully use the methods elaborated in this
Letter for the description of the neutrino conversion
or oscillations. Basing on the initial fields distributions
obtained in the item (1) we derive the final fields dis-
tributions that take into particles mixing;

(3) Neutrino interaction with a detector. This pro-
cess again can be described by means of quantum field
theory. On the basis of the fields distributions obtained
in the item (2) one can calculate the neutrino flux mea-
sured with a detector.

Thus we should not directly involve the mass eigen-
states if we are using classical approach.

In conclusion we mention that the evolution of the
coupled scalar as well as fermion fields within the
classical field theory has been studied in this Letter.
We have examined the case df coupled fields in
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. . . . [7] M. Blasone, G. Vitiello, Phys. Rev. D 60 (1999) 111302, hep-
two coupled fields in(1 + 1)-dimensional space has ph/9907382

been studied. Finally we have obtained the expressions (g m. Blasone, P.P. Pacheco, H.W.C. Tseung, Phys. Rev. D 67
for the averaged fields intensities. It has been shown (2003) 073011, hep-ph/0212402.
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ilar to the usual transition probabilities formulae of 025033, hep-th/0204184.
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additional terms in transition probabilities formulae K. Fujii, C. Habe, T. Yabuki, Phys. Rev. D 60 (1999) 099903,
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bosons and fermions turned out to be identical. We __ hep-ph/0102001.

have shown by means of the direct calculations that 2 :):H/sae;ﬂgé?? Kim, Phys. Rev. D 58 (1998) 017301, hep-
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that the usage of the quantum mechanics is inexpedi- ~ (2003) 443, hep-ph/0211241.
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