Electroweak Physics at the ILC

Georg Weiglein

IPPP Durham

Manchester, 07/2007

- Introduction
- Higgs physics at the ILC
- Top and electroweak precision physics
- New results for electroweak precision observables in the MSSM
- Conclusions

Introduction

The International Linear Collider (ILC)

world-wide project, RDR (+ costing) issued earlier this year, Engineering Design Report in preparation

Electron–positron scattering at \approx 0.5–1 TeV:

fundamental particles, point-like, electroweak interaction well-defined initial state, full collision energy usable, tunable

Results are easy to interpret, all events can be recorded \Rightarrow high-precision physics

Physics at the LHC and ILC in a nutshell

LHC: pp scattering at 14 TeV

ILC: e^+e^- scattering at \approx 0.5–1 TeV

Scattering process of proton constituents with energy up to several TeV,

strongly interacting

⇒ huge QCD backgrounds, low signal–to–background ratios Clean exp. environment: well-defined initial state, tunable energy, beam polarization, GigaZ, $\gamma\gamma$, $e\gamma$, e^-e^- options, ... \Rightarrow rel. small backgrounds

high-precision physics

Electroweak Physics at the ILC, Georg Weiglein, EPS07, Manchester, 07/2007 - p.3

LHC / ILC complementarity

The results of LHC and ILC will be highly complementary

LHC: good prospects for producing new heavy states (in particular strongly interacting new particles)

ILC: direct production (in particular colour-neutral new particles)

 high sensitivity to effects of new physics via precision measurements

Many examples for LHC / ILC interplay:

LHC / ILC Study Group Report

[*G. W. et al., hep-ph/0410364, Phys. Rept. 426 (2006) 47*] www.ippp.dur.ac.uk/~georg/lhcilc

ILC Baseline Parameters

- Baseline parameters were established by a WWS committee in 2003 and reexamined in 2006
- Maximum energy should be 500 GeV, with energy range for physics between 200 GeV and 500 GeV
 ⇒ energy scans possible at all cms energies
- Luminosity and reliability such that 500 fb⁻¹ can be collected in first four years
- Electron polarisation of at least 80%

"Options" to ILC Baseline

- Energy should be upgradeable to approx. 1 TeV
- Doubling of integrated luminosity to a total of 1 ab⁻¹ within two additional years of running
- Positron polarisation at or above 50% in whole energy range
- Running at Z resonance and WW threshold with high lumi ("GigaZ" running)
- e^-e^- , $e\gamma$, $\gamma\gamma$ collisions

Reexamination of ILC baseline parameters and options

No modification of original baseline parameters necessary

Positron polarisation yields significant physics gain Already in baseline design (undulator-based positron source): $\approx 30\%$ positron polarisation exploitable for physics

Higgs physics at the ILC

"Golden" production channel: $e^+e^- \rightarrow ZH$, $Z \rightarrow e^+e^-$, $\mu^+\mu^-$

Higgs discovery possible independently of decay modes (from recoil against Z boson)

 $\Delta \sigma_{\mathrm{HZ}} / \sigma_{\mathrm{HZ}} \approx 2\%$ ($E_{\mathrm{CM}} = 350$ GeV, $\int \mathcal{L} dt = 500$ fb⁻¹)

Electroweak Physics at the ILC, Georg Weiglein, EPS07, Manchester, 07/2007 - p.8

The ILC will be a "Higgs factory"

Example: $E_{\rm CM} = 800$ GeV, 1000 fb⁻¹, $M_{\rm H} = 120$ GeV:

 $\Rightarrow \approx 160000$ Higgs events in "clean" experimental environment

 ⇒ Precise measurement of Higgs mass and couplings, determination of Higgs spin and quantum numbers,
 Mass determination for a light Higgs:

 $\delta M_{\rm H}^{\rm exp} \approx 0.05 \ {\rm GeV}$

⇒ Verification of Higgs mechanism in model-independent way distinction between different possible manifestations: extended Higgs sector, invisible decays, Higgs-radion mixing, ...

Example: Higgs coupling determination

LHC: no absolute measurement of total production cross section (no recoil method like LEP, ILC: $e^+e^- \rightarrow ZH$, $Z \rightarrow e^+e^-, \mu^+\mu^-$)

Production × decay at the LHC yields combinations of Higgs couplings ($\Gamma_{\text{prod, decay}} \sim g_{\text{prod, decay}}^2$): $\sigma(H) \times \text{BR}(H \to a + b) \sim \frac{\Gamma_{\text{prod}}\Gamma_{\text{decay}}}{\Gamma_{\text{tot}}},$

Large uncertainty on dominant decay for light Higgs: $H \rightarrow b\bar{b}$

 \Rightarrow LHC can directly determine only ratios of couplings, e.g. $g^2_{H\tau\tau}/g^2_{HWW}$

Higgs coupling determination at the LHC

Need additional (mild) theory assumption to obtain absolute values of the couplings at the LHC:

[M. Dührssen, S. Heinemeyer, H. Logan, D. Rainwater, G. W., D. Zeppenfeld '04]

$$g_{HVV}^2 \le (g_{HVV}^2)^{\text{SM}}, \quad V = W, Z$$

\Rightarrow Upper bound on Γ_V

Observation of Higgs production

 \Rightarrow Lower bound on production couplings and Γ_{tot}

Observation of $H \rightarrow VV$ in WBF

 \Rightarrow Determines $\Gamma_V^2/\Gamma_{tot} \Rightarrow$ Upper bound on Γ_{tot}

 \Rightarrow Absolute determination of Γ_{tot} and Higgs couplings

Absolute determination of couplings (Z, W, t, b, c, τ) with 1–5% accuracy, no theory assumptions needed

Model-independent measurement of the total width

 $\Gamma_{\gamma\gamma}$: 2% measurement at photon collider option

Higgs coupling determination: LHC vs. ILC

Comparison: LHC (with mild theory assumptions) vs. ILC (model-independent)

[*M. Dührssen, S. Heinemeyer, H. Logan, D. Rainwater, G. W., D. Zeppenfeld '04*] [*K. Desch '06*]

Impact of ILC precision for the Higgs couplings

SM vs. BSM physics:

⇒ Precision measurement of Higgs couplings allows distinction between different models

Precision Higgs physics

t

Large coupling of Higgs to top quark

One-loop correction $\sim G_{\mu}m_{\rm t}^4$

 $\Rightarrow M_{\rm H}$ depends sensitively on $m_{\rm t}$ in all models where $M_{\rm H}$ can be predicted (SM: $M_{\rm H}$ is free parameter)

Precision Higgs physics

t

Large coupling of Higgs to top quark

One-loop correction $\sim G_{\mu}m_{\rm t}^4$

 $\Rightarrow M_{\rm H}$ depends sensitively on $m_{\rm t}$ in all models where $M_{\rm H}$ can be predicted (SM: $M_{\rm H}$ is free parameter)

SUSY as an example: $\Delta m_{\rm t} \approx \pm 2 \text{ GeV} \Rightarrow \Delta m_{\rm h} \approx \pm 2 \text{ GeV}$

Precision Higgs physics

Large coupling of Higgs to top quark

One-loop correction $\sim G_{\mu}m_{\rm t}^4$

- $\Rightarrow M_{\rm H}$ depends sensitively on $m_{\rm t}$ in all models where $M_{\rm H}$ can be predicted (SM: $M_{\rm H}$ is free parameter)
- SUSY as an example: $\Delta m_{\rm t} \approx \pm 2 \text{ GeV} \Rightarrow \Delta m_{\rm h} \approx \pm 2 \text{ GeV}$
- ⇒ Precision Higgs physics needs precision top physics LHC: $\Delta m_{\rm h} \approx 0.2 \text{ GeV}$, $\Delta m_{\rm t} \gtrsim 1 \text{ GeV}$, ILC: $\Delta m_{\rm t} \lesssim 0.1 \text{ GeV}$

Top and electroweak precision physics

EW precision data: $M_{\rm Z}, M_{\rm W}, \sin^2 \theta_{\rm eff}^{\rm lept}, \dots$ Theory: SM, MSSM, ...

Test of theory at quantum level: sensitivity to loop corrections

Top-quark physics and eletroweak precision observables: $\sin^2 \theta_{\text{eff}}$, M_W , ..., $\sigma(e^+e^- \to f\bar{f})$, ...

 $\sin^2 \theta_{\text{eff}}, M_{\text{W}}, \ldots$: Electroweak precision observables, high sensitivity to effects of new physics

 \Rightarrow test of the theory, discrimination between models

Top quark: By far the largest quark mass, largest mass of all known fundamental particles \Rightarrow window to new physics?

⇒ large coupling to the Higgs boson important for physics of flavour prediction of m_t from underlying theory?

Loop corrections \Rightarrow non-decoupling effects prop. to $m_{\rm t}^2$, $m_{\rm t}^4$

 \Rightarrow Need to know $m_{\rm t}$ very precisely in order to have sensitivity to new physics

Precision top physics

Current exp. error on m_t from the Tevatron: $\delta m_t^{exp} = 1.8 \text{ GeV}$

Precision top physics

- Current exp. error on m_t from the Tevatron: $\delta m_t^{exp} = 1.8 \text{ GeV}$
- Which mass is actually measured at the Tevatron and the LHC?
- What is the mass of an unstable coloured particle? Impact of higher-order effects? The pole mass is not "IR safe"

Precision top physics

- Current exp. error on m_t from the Tevatron: $\delta m_t^{exp} = 1.8 \text{ GeV}$
- Which mass is actually measured at the Tevatron and the LHC?
- What is the mass of an unstable coloured particle? Impact of higher-order effects? The pole mass is not "IR safe"

ILC:

- Measurement of 'threshold mass' with high precision: $\lesssim 20 \text{ MeV} + \text{transition to suitably defined (short-distance)}$ top-quark mass, e.g. $\overline{\mathrm{MS}}$ mass
 - ILC: $\delta m_{\rm t}^{\rm exp} \lesssim 100 \; {\rm MeV}$ (dominated by theory uncertainty)

From running at $t\bar{t}$ threshold and in the continuum:

- Precision measurements of
- top-quark mass
- top couplings to gauge bosons, el. charge, spin
- top Yukawa coupling
- \checkmark $V_{\rm td}$, $V_{\rm ts}$, $V_{\rm tb}$
- total width
- top cross section

_ . .

Electroweak precision observables (EWPO): present status vs. GigaZ / MegaW precision

obs.	exp. cent. value	$\sigma^{ m today}$	$\sigma^{ m LHC}$	$\sigma^{ m ILC}$
$M_{\rm W} [{\rm GeV}]$	80.398	0.025	0.015	0.007
$\sin^2 heta_{ m eff}$	0.23153	0.00016	$20-14 \times 10^{-5}$	1.3×10^{-5}
$\Gamma_Z [\text{GeV}]$	2.4952	0.0023		0.001
R_l	20.767	0.025		0.01
R_b	0.21629	0.00066		0.00014
$\sigma_{ m had}^0$	41.540	0.037		0.025

\Rightarrow Large improvement at the ILC

Theoretical predictions for EWPO

Sources of theoretical uncertainties:

Unknown higher-order corrections

Theoretical predictions for EWPO

Sources of theoretical uncertainties:

- Unknown higher-order corrections
- Parametric uncertainty induced by the experimental errors of the input parameters Dominant effect: experimental error of m_t \Rightarrow ILC will yield improvement by an order of magnitude exp. error on m_t : $\approx 1 \text{ GeV} \xrightarrow{\text{ILC} + \text{GigaZ}} 0.1 \text{ GeV}$

New results for electroweak precision observables in the MSSM

New results for M_W and Z observables $\sin^2 \theta_{eff}$, Γ_Z , R_l , R_b , σ_{had}^0 :

Complete one-loop results with complex parameters + inclusion of all available higher-order corrections

[S. Heinemeyer, W. Hollik, D. Stöckinger, A.M. Weber, G. W. '06]

[S. Heinemeyer, W. Hollik, A.M. Weber, G. W. '07]

New results for electroweak precision observables in the MSSM

New results for M_W and Z observables $\sin^2 \theta_{eff}$, Γ_Z , R_l , R_b , σ_{had}^0 :

Complete one-loop results with complex parameters + inclusion of all available higher-order corrections [S. Heinemeyer, W. Hollik, D. Stöckinger, A.M. Weber, G. W. '06] [S. Heinemeyer, W. Hollik, A.M. Weber, G. W. '07]

Theoretical evaluation in the SM is more advanced than in the MSSM \Rightarrow incorporation of state-of-the-art SM results using

$$O^{\text{MSSM}} = \underbrace{O^{\text{SM}}}_{(a)} + \underbrace{O^{\text{MSSM}-\text{SM}}}_{(b)}$$

(a): full SM result

(b): difference between SM and MSSM, evaluated at the level of precision of the known MSSM corrections

Incorporation of higher-order corrections from the Higgs sector

Higgs sector enters EWPO only via loop corrections

⇒ For one-loop corrections to EWPO it would in principle be sufficient to treat the Higgs sector in leading order, i.e. at the tree level

However:

Tree-level mass of light MSSM Higgs boson is below the SM exclusion bound on $M_{\rm H}$

⇒ Treating the MSSM Higgs sector at tree level leads to artificially large contributions to EWPO from the light MSSM Higgs boson

Incorporation of higher-order corrections from the Higgs sector

- Large higher-order corrections in the MSSM Higgs sector:
- ⇒ Correction to upper bound on m_h of about 50% large corrections to Higgs couplings
 - \mathcal{CP} -violating mixing

- ⇒ Incorporation of leading higher-order corrections in the MSSM Higgs sector into the predictions for the EWPO
- Consistency checks: symmetry relations, UV-finiteness

Results for $M_{\rm W}$, $\sin^2 \theta_{\rm eff}$, $\Gamma_{\rm Z}$

Dependence on the sfermion mass scale [S. Heinemeyer, W. Hollik, A.M. Weber, G. W. '07]

GigaZ: sensitivity to the scale of SUSY in a scenario where

no SUSY particles are observed at the LHC

[S. Heinemeyer, W. Hollik, A.M. Weber, G. W. '07]

 \Rightarrow GigaZ measurement provides sensitivity to SUSY scale, extends the direct search reach of ILC(500)

Higgs sector at higher orders: impact on $M_{\rm W}$ and $\sin^2 \theta_{\rm eff}$

[S. Heinemeyer, W. Hollik, A.M. Weber, G. W. '07]

 \Rightarrow Sizable effects

ILC can probe loop-induced effects from the Higgs sector

Impact of the complex phases ϕ_{A_t} , ϕ_{A_b} in the sfermion sector

Enter leptonic observables M_W , $\sin^2 \theta_{eff}$, ... at 1-loop order only via

$$|X_{t}|^{2} = |A_{t}|^{2} + |\mu \cot \beta|^{2} - 2|A_{t}| \cdot |\mu| \cot \beta \cos(\phi_{A_{t}} + \phi_{\mu})$$

$$|X_{b}|^{2} = |A_{b}|^{2} + |\mu \tan \beta|^{2} - 2|A_{b}| \cdot |\mu| \tan \beta \cos(\phi_{A_{b}} + \phi_{\mu})$$

where $X_t = A_t - \mu^* / \tan \beta$, $X_b = A_b - \mu^* \tan \beta$, $\tan \beta \equiv v_2 / v_1$

 \Rightarrow phase dependence only enters via the squark masses and mixing angles

Effects of varying the complex phase ϕ_{A_t} on M_W , $\sin^2 \theta_{eff}$, Γ_Z

⇒ Shift in M_W , $\sin^2 \theta_{eff}$, Γ_Z predictions by 1–2 σ for small $\tan \beta$ Largely improved sensitivity at the ILC

Prediction for $\sin^2 \theta_{\rm eff}$ (parameter scan): SM vs. MSSM

Prediction for $\sin^2 \theta_{\text{eff}}$ in the SM and the MSSM:

 \Rightarrow ILC precision on $\sin^2 \theta_{
m eff}$ and $m_{
m t}$ yields drastic improvement

■ Electroweak precision physics at the ILC: Higgs, top, $e^+e^- \rightarrow f\bar{f}$, M_W , GigaZ, ...

- Electroweak precision physics at the ILC: Higgs, top, $e^+e^- \rightarrow f\bar{f}, M_W$, GigaZ, ...
- New results for M_W and Z observables $\sin^2 \theta_{eff}$, Γ_Z , R_l , R_b , σ_{had}^0 in the MSSM:

Complete one-loop results with complex parameters + inclusion of all available higher-order corrections

- Electroweak precision physics at the ILC: Higgs, top, $e^+e^- \rightarrow f\bar{f}$, M_W , GigaZ, ...
- New results for M_W and Z observables $\sin^2 \theta_{eff}$, Γ_Z , R_l , R_b , σ_{had}^0 in the MSSM:

Complete one-loop results with complex parameters + inclusion of all available higher-order corrections

Sensitivity to higher-order effects drastically improves with ILC precision on EWPO and m_t

- Electroweak precision physics at the ILC: Higgs, top, $e^+e^- \rightarrow f\bar{f}, M_W$, GigaZ, ...
- New results for M_W and Z observables $\sin^2 \theta_{eff}$, Γ_Z , R_l , R_b , σ_{had}^0 in the MSSM:

Complete one-loop results with complex parameters + inclusion of all available higher-order corrections

- Sensitivity to higher-order effects drastically improves with ILC precision on EWPO and m_t
- ⇒ Electroweak physics at the ILC will be a very powerful tool for probing the structure of new physics