

Results of the ATLAS Solenoid Magnetic Field Map

CERN mapping project team

Martin Aleksa, Felix Bergsma, Laurent Chevalier, Pierre-Ange Giudici, Antoine Kehrli, Marcello Losasso, Xavier Pons, Heidi Sandaker

Map fitting by

John Hart (RAL)

Paul S Miyagawa, Steve Snow (Manchester)

The Universi of Manchest

Outline

- Overview of mapping campaign
- Corrections to data
- Geometrical fit results
- Geometrical + Maxwell fit results
- Systematic errors
- Conclusions

ATLAS Experiment

- LHC will produce proton-proton collisions:
 - cms energy 14 TeV

MANCHESTER 1824

Muon Detectors

- 25 ns bunch spacing
- 1.1×10¹¹ protons/bunch
- design luminosity 10³⁴ cm⁻²s⁻¹
- ATLAS is a general-purpose detector:
 - diameter 25 m, length 46 m

Tile Calorimeter

- overall mass 7000 tonnes
- ATLAS solenoid provides 2 T field for Inner Detector
 - length 5.3 m, diameter 1.25 m, 1159 turns

Liquid Argon Calorimeter

operated at 7730 A

.

 Mapping 6m long x 2m diameter cylindrical volume

MANCHESTER 1824

The University of Manchester

- 2 Tesla (20000 Gauss) at Z=0, dropping to 0.8 T at Z=3m
- Require track sagitta error due to field uncertainty < 0.05%
 - Motivated by targets on uncertainty for measurement of W mass

Paul S Miyagawa

EPS HEP 2007, Manchester, 20 July 2007

4/16

The Universit

Data sets recorded

- Data taken at four different solenoid currents
 - Nominal current (7730
 A) gives 2 T at centre
 - Low current (5000 A) gives 1.3 T and is used with low-field probe calibration
- Fine phi scans used to measure the (tiny) perturbation of the field by the mapping machine
- Total data collected ~0.75M
 - Statistical errors will be negligible

Date in August	Current (A)	Number of φ steps	Number of Z steps
2nd-3rd	7730	16	99
3rd	7730	64	1
4th	7850	16	25
	7000	16	44
	5000	16	76
	5000	64	1
7th	7730	16	8
	7730	24	26
	7730	12	35

6/16

Corrections to data

of Manchesit De Oniversity Of Manchesity Geometrical effects

- Plenty of survey data taken before and after mapping campaign
 - Positions of individual Hall sensors can be determined to ~0.2 mm accuracy
- Mapping machine skew recorded in data
- Carriage tilts determined from data

Probe calibrations

- Response of Hall sensors calibrated as function of field strength, field orientation and temperature using test stands at CERN and Grenoble
 - Low-field calibration (up to 1.4 T) has expected accuracy of ~2 G, 2 mrad
 - High-field calibration (up to 2.5 T) has expected accuracy of ~10 G, 2 mrad
- NMR probes intrinsically accurate to 0.1 G
- Absolute scale of high-field Hall calibration improved using low-field Hall calibration and NMR values
- Relative Hall probe normalisations and alignments determined from data

Other effects

Effects of magnetic components of mapping machine corrected using magnetic dipoles

The University of Mancheste

Fit quality measures

- We fit the map data to field models which obey Maxwell's equations
 - The volume covered has no currents and has effects of magnetic materials removed
 - Maxwell's equations become

$$\nabla \cdot B = 0; \quad \underline{\nabla} \times \underline{B} = \underline{0}$$

• Our fit uses Minuit to minimise

$$\chi^{2} = \sum_{\substack{i = \text{data points} \\ c = Z, R, \phi}} \left(\frac{B_{c,i}^{\text{measured}} - B_{c,i}^{\text{fit}}}{5 \text{ Gauss}} \right)^{2}$$

• Our aim is to know the track sagitta, which is proportional to $(c_r \text{ and } c_z \text{ are direction cosines})$

$$S = \int_{0}^{max} r(r_{max} - r)(c_{r}B_{z} - c_{z}B_{r})dl$$

• Our fit quality is defined to be $\delta S/S$ where

$$\delta S = \int_{0}^{r_{\text{max}}} r(r_{\text{max}} - r) \left(c_r \left(B_z^{\text{meas}} - B_z^{\text{fit}} \right) - c_z \left(B_r^{\text{meas}} - B_r^{\text{fit}} \right) \right) dl$$

Paul S Miyagawa

EPS HEP 2007, Manchester, 20 July 2007

8/16

Geometrical fit

1 turn mixed pitch

- We use a detailed model of the conductor geometry and integrate Biot-Savart law using the known current
- 7 free parameters
 - Scale factor and aspect ratio (length/diameter) of conductor model
 - Position and orientation of conductor model relative to IWV
- 4% of field is due to magnetised iron (TileCal, girders, shielding discs etc)
 - Parametrised using 4 free parameters of Fourier-Bessel series with length scale=2.5m

$$B_{z} = \sum_{i=1}^{4} C_{i} \cos(\frac{zi}{s}) \downarrow (\frac{ri}{s})$$

$$B_{r} = \sum_{i=1}^{4} C_{i} \sin(\frac{zi}{s}) I_{1}(\frac{ri}{s})$$

Paul S Miyagawa

EPS HEP 2007, Manchester, 20 July 2007

4,60

4.60

End A

+X

11.25 deg

-Y

z

average pitch 4.566 mm

Length 5.283 m

conductor 1.286 m

247

Weld thickness

4.60

4.60

Phi

Conductor geometry

determined

by surveys

of solenoid

except weld

thickness,

which was determined

from data

as 1.9×pitch

as built

-X

9/16

MANCHESTER

Results from geometrical fit

Full fit (geometrical + Maxwell

The Universit A few features remain in the residuals from the geometrical fit

MANCHESTER

- Ripples for |Z| < 2m believed to be due to variations in the coil winding density
- Bigger features at |Z|>2m believed to arise from the coil cross-section not being perfectly circular
 - These effects are more pronounced at the ends of the solenoid
- These features cannot be determined accurately enough to be included in the geometrical model
 - However, they are real fields which should obey Maxwell's equations
- We apply a general Maxwell fit to the residuals to account for these features

General Maxwell fit

- The University of Manchester General fit able to describe any field obeying Maxwell's equations.
 - Uses only the field measurements on the surface of a bounding cylinder, including the ends.
 - Parameterisation proceeds in three stages:
 - 1. B_z on the cylindrical surface is fitted as Fourier series, giving terms with φ variation of form $\cos(n\varphi + \alpha)$, with radial variation $I_{n}(\kappa r)$ (modified Bessel function).
 - 2. $B_z^{\text{meas}} B_z^{(1)}$ on the cylinder ends is fitted as a series of Bessel functions, $J_n(\lambda_j r)$ where the λ_j are chosen so the terms vanish for $r = r_{\text{cyl}}$. The z-dependence is of form $\cosh(\mu z)$ or $\sinh(\mu z)$.
 - 3. The multipole terms are calculated from the measurements of B_r on the cylindrical surface, averaged over z, after subtraction of the contribution to B_r from the terms above. (The only relevant terms in B_z are those that are odd in z.)

Results from full fit I

Results from full fit II

- The University of Manchester All geometrical fit parameters (length scale, position, etc) consistent with expected results
 - With full fit, residuals of all probes reduced significantly
 - Recall that Maxwell fit is made using outermost probes only
 - Fact that the fit matches inner probes as well shows strong evidence that the difference between data and geometrical model is a real field
 - With geometrical fit alone, rms of relative sagitta error $\delta S/S$ already within target of 5×10⁻⁴

- Adding Maxwell fit improves $\delta S/S$, especially at high η

Fit	B _z (G)		B _R (G)		Β _φ (G)		δS/S (×10 ⁻⁴)	
	rms	extreme	rms	extreme	rms	extreme	rms	extreme
Geom	5.23	-51.5	5.14	-49.9	4.60	+22.1	3.35	+10.9
Full	4.34	-37.1	3.52	-33.8	2.90	+15.2	1.29	+6.5

Paul S Miyagawa

EPS HEP 2007, Manchester, 20 July 2007

14/16

- Uncertainty in overall scale
 - Comparison between Hall and NMR probes
 - Weld thickness, which influences the Hall-NMR comparison
 - Overall scale error 2.1×10⁻⁴
- Uncertainty in shape of field
 - Dominant factor is 0.2 mrad uncertainty in orientation of the mapping machine relative to ATLAS physics coordinates
 - Overall shape error 5.9×10⁻⁴
- Total uncertainty varies from 2–11 ×10⁻⁴
 - Dominated by scale error at low η, shape error at high η

Paul S Miyagawa

EPS HEP 2007, Man

The University of Manchestel MANCHESTER

- The ATLAS solenoid field mapping team recorded
 - All possible corrections from surveys, probe calibrations and probe alignments have been applied to the data
 - We have determined a fit function satisfying Maxwell's equations which matches each component of the data to within 4 Gauss rms
 - Using this fit, the relative sagitta error ranges from 2–11 ×10⁻⁴
 - At high rapidity, the systematic errors are dominated by a 0.2 mrad uncertainty in the direction of the field axis relative to the ATLAS physics coordinate system

Backup slides

Surveys

- Survey of mapping machine in Building 164
 - Radial positions of Hall cards
 - Z separation between arms
 - Z thickness of arms
- Survey in situ before and after mapping
 - Rotation centre and axis of each arm
 - Position of Z encoder zero
 - Positions of NMR probes
- Survey of ID rails
 - Gradient wrt Inner Warm Vessel coordinates
- Survey of a sample of 9 Hall cards
 - Offsets of BZ, BR, Bf sensors from nominal survey point on card
- Sensor positions known with typical accuracy of 0.2 mm

Paul S Miyagawa

EPS HEP 2007, Manches

chester

Probe calibrations

MANCHESTER

Hall sensors

- Response measured at several field strengths, temperatures and orientations (θ,φ)
- Hall voltage decomposed as spherical harmonics for (θ, ϕ) and Chebyshev polynomials for |B|, T

 $V(|B|, Temp, \theta, \varphi)$

$$=\sum_{k}\sum_{n}\sum_{l}\sum_{m=0}^{l}c_{klm}T_{k}(|B|)d_{nlm}T_{n}(Temp)Y_{lm}(\theta,\varphi)$$

- Low-field calibration (up to 1.4 T): expected accuracy ~2 G, 2 mrad
- High-field calibration (up to 2.5 T): expected accuracy ~10 G, 2 mrad

NMR probes

- No additional calibration needed (done by whoever measured Gp = 42.57608 MHz/T)
- Compare proton resonance frequency with reference oscillator
- Intrinsically accurate to 0.1 G

Paul S Miyagawa

EPS HEP 2007, Mancheste

Probe normalisation and alignmen

- Exploited the mathematics of Maxwell's equations to determine relative probe normalisations and alignments
- B_z normalisation:

MANCHESTER

- Uses the fact that each probe scans the field on the surface of a cylinder
- B_z at centre determined for each probe
- All probes were then normalised to the average of these values
- Probe alignment:
 - Uses curl **B** = **0** and

$$B_{\varphi}^{m} = B_{\varphi} + A_{\varphi z} B_{z} - A_{r\varphi} B_{r}$$

- Integrate
$$\oint B_{\varphi} ds = 0$$

- Tilt angles A_{jj} of probe were determined from a least squares fit
- The third alignment angle comes from div B = 0

Paul S Miyagawa

EPS HEP 2007, Manc

Manchest

Carriage tilts

- Another analysis which exploited mathematics of Maxwell
- B_x and B_y on the z-axis evaluated from average over φ for probes near centre of solenoid
- Plots of B_x, B_y versus Z of carriage show evidence that entire carriage is tilting
- Degree of tilt can be calculated by integrating to find expected B_x, B_y value

$$\frac{\partial B_x}{\partial z} = \frac{\partial B_z}{\partial x}$$

 Jagged structure of tilts suggest that machine is going over bumps on the rail of ~0.1 mm

EPS HEP 2007, Manc

Absolute Hall scale

- Absolute scale of high-field Hall calibration (10 G) is greatest uncertainty
 - Can be improved using low-field Hall calibration (2 G) and NMR value (0.1 G)
- Low-field Hall values and NMR values are equal for 5000 A data
 - Low-field Hall values are considered accurate in low-field region
- Discrepancy between low- and high-field Hall values in low-field region

- Discrepancy between high-field Hall values (derived from field fits) and NMR value in high-field region
 - This discrepancy lines up with the discrepancy from low-field region
- Alternative high-field Hall values from extrapolation give estimate
 of systematic error

MANCHESTER

The University of Mancheste

Magnetic machine component

 Perturbation of the magnetic field by the mapping machine was not anticipated

MANCHESTER

The Universit of Mancheste

- Some spikes in the data were clearly attributed to components of the mapping machine
- A dipole was subtracted at each component position with field strength chosen to make residuals look smooth

Object	Z (m)	R (m)	Phi (deg)	Strength
Phi encoder	-0.02	0.190	90	0.0090
Phi motor bearings	-0.13	0.378	164	0.0023
Z motor bearings	-0.13	0.772	171	0.0023
Magnetic plug on ESB	-0.04	0.457	9	0.0182
Z encoder	-0.04	1.080	188	0.0056
Z encoder	0.00	1.080	352	0.0056
electrical valve	-0.08	0.865	18	0.0032
electrical valve	-0.08	0.830	162	0.0032
Z motor bearings	-0.13	0.830	8	0.0023

