First CALICE Results from CERN Testbeam Data

Sebastian Schätzel, DESY for the CALICE Collaboration

19 July 2007 EPS Conference Manchester

an ILC detector concept: Particle Flow

tracker energy resolution for charged particles better than calorimeter

tracker: all charged particles calorimeter: neutrals

isolate the neutral particle clusters unprecedented granularity 1x1cm² ECAL, 3x3cm² HCAL

CALICE Prototype goals:

- establish technology that allows high granularity
- resolve fine structures of showers and test models and reconstruction algorithms

EM calorimeter

- silicon tungsten sandwich
- analogue read-out with silicon pads

360mm

• cell size: 1x1cm² (~R_{Moliere}(W))

360mm

• 30 layers, 24 X₀

- 36 silicon PIN diodes each
 → 216 channels per board.
- Diode size: 1 × 1 cm².

- 18 channels / chip
 - 13 bit dynamic range

Calibration chips

- 2 calibration switches chips.
- 6 calibration channels per chip.
- 18 diodes per calibration channel.

HCAL structure

- scintillator steel sandwich
- tiles: polystyrene, 0.5 cm thick
- 3x3cm² granularity in inner core (6x6 and 12x12 around)
- 216 tiles per layer (1x1m²), 38 layers
- 8000 read-out channels
- 2cm steel plates

Photosensor mounted on tile:

Silicon Photomultiplier (SiPM)

- 1mm² active area, 1156 pixels
- matrix of Geiger mode photo diodes
- signal is charge sum of all fired pixels
- signal and gain depends on temperature

$$\frac{1}{Q}\frac{dQ}{dT} = -(3..4)\%/\mathrm{K} \qquad \frac{1}{G}\frac{dG}{dT} \approx -2\%/K$$

 non-linear response due to pixel dead-time (corrected off-line)

Combined CALICE beam test at CERN SPS

August/October 2006

21 days of data taking+12d parasitic μ

combined effort: tungsten ECAL+ scintillator HCAL+ Tail Catcher readout through one DAQ system

- 70 Million events recorded
- very stable detector: availability>90% (all components!)

beam e	events (10 ⁶)
$e^{+/-}$ 6–50 GeV :	3.5
$\pi^{+/-}$ 6–80 GeV:	22
$e^{+/-}$ without ECAL:	3

DAQ:

- 500Hz peak rate
- 100Hz typical (limited by particle rate in beam)

ECAL linearity and energy resolution

linear within 1% from 1-45 GeV

relative energy resolution (electrons)

close to MC expectations

ECAL transverse shower profile

tungsten: $R_{Moliere} \approx 9 \text{ mm}$ but ECAL layer structure: $R_{effective} \approx 20 \text{ mm}$

R&D ongoing to reduce the thickness of Silicon pads+PCB structure (currently 2.1mm)

Tracking with ECAL

reconstruct position (\bar{x}, \bar{y}) of shower in each layer

📥 track in ECAL

Position Resolution

$$\bar{x} = \frac{\sum_{i} E_i x_i}{\sum_{i} E_i}$$

position on 1st layer

4 drift chambers Angular Resolution track angles **Calice Preliminary** Resolution (mrad 🗶 x Angle, Data y Angle, Data x Angle, MC 70E Angle, MC 65 $\theta_{u} = \arctan(dx/dz)$ 60 55 50 45 40 35 2 3 5 Energy (GeV)

 $10x \sigma$ (drift chamber)

3-4x σ(drift chamber)

HCAL: Electron data

establish calibration procedure for use in hadron analysis

energy scale: defined by E_{rec}(20 GeV)-E_{rec}(10 GeV)≡10 GeV

linearity after correcting SiPM non-linearity: within 3% below 30 GeV 6% below 45 GeV

additional noise in data under investigation

HCAL: Hadron data

6-20 GeV π⁻

contained showers selected by veto on tail catcher detector

lower hit energy than EM showers

Systematic errors:

- SiPM non-linearity correction known within 2% (from EM data)
- temperature varied by 1K (day/night)
 SiPM signal change by 3..4%

HCAL: energy linearity and resolution

HCAL: longitudinal hadron shower profile

Conclusions & Outlook

- prototypes for ILC calorimeters built and operated in test beam
- unprecedented granularity
- First preliminary measurements have been shown
- The detectors are understood in terms of MC simulation
- energy resolution as expected from MC
- shower profiles show expected behaviour
- HCAL calibration established: SiPM saturation correction understood within 3% below 30 GeV

Outlook:

- R&D is ongoing to improve for large-scale prototype (EUDET)
- HCAL: further SiPM stabilisation (temperature) using LED calibration system
- detailed comparisons with shower models
- shower decomposition based on energy density and "tracks"
- new data is being taken at the moment at CERN (full instrumentation)

Backup Slides

ECAL: longitudinal shower profile

depth of "shower maximum" depends linearly on log(E/GeV)

Scintillator HCAL Calibration

SiPM non-linear response using laboratory-measured curve of every SiPM to translate signal to a linear scale

Low intensity LED light

(2% precision)

HCAL: electron longitudinal shower profile

more energy in first layer than predicted

energy in core not well described

needs investigation

HCAL: electron transverse shower profile

Data 10 GeV e⁻, HCAL 15 layers MC TBCern0806_01 + digitization

10

10

10⁻¹

10⁻²

2

6

8

10

12

14

Distance to center of gravity [cm]

16

Energy per event [GeV]

good overall agreement

18

20

more energy away from centre than predicted needs investigation

Event Displays

HCAL LED System

Muon calibration runs and LED monitoring

LED system:

- 10ns pulses
- Intensity: 0-100 MIPs (steered from DAQ)
- 424 UV-LEDs (18 SiPMs pro LED)
- Light distribution via optical fibres
- 424 PIN photodiodes to measure LED intensity

Temperature:

Monitoring of response curve

Tail Catcher

- extruded silicon strips (5cm x 1m), thickness 0.5cm
- alternating horizontal and vertical orientation
- SiPM readout (via WLF)
- uses AHCAL readout electronics
- LED system
- 20 strips per layer
- 320 readout channels
- Sandwich:
 - 8 layers with 2cm steel
 - 8 layers with 10cm steel
 - total: 5.7 λ
- weight: 10t

