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ν beams: conventional  and nufact beams

Problem in conventional beams: 
a lot of minority components 
(beam understanding)
Following muon collider studies, 
accelerated muons are ALSO an 
intense source of “high energy” ν

Crucial features
high intensity (x 100 conventional 
beams)
known beam composition

(50% νµ 50% νe )
Possibility to have an intense νe 
beam
Essential detector capabilities:

detect µ and determine their sign

WANF

(conventional)

Nufact
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Sensitivity of Nufact
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present limit from the CHOOZ experiment
0.75 MW JHF to super Kamiokande with an off-axis narrow-band beam,
Superbeam: 4 MW CERN-SPL to a 400 kt water Cerenkov@ Fréjus (J-PARC phase II 
similar)
Neutrino Factory with 40 kton large magnetic detector.
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Towards a Neutrino Factory: the challenges
• Target and collection (HARP/MERIT)

– Maximize π+ and π- production
– Sustain high power (MW driver)
– Optimize pion capture
INTENSE PROTON SOURCE (MW); 

GOOD COLLECTION SCHEME
• Muon cooling (MICE)

– Reduce µ+/µ- phase space to 
capture as many muons as 
possible in an accelerator

• Muon acceleration
– Has to be fast, because muons 

are short-lived !
(RLA, FFAG, …)

NOW 2006 - Otranto



M. Bonesini - HEP07 Manchester 6

Muon ionization cooling

principle reality (simplified)

reduce pt
and pl

increase pl

heating

Stochastic cooling is too slow.
A novel method for µ+ and µ- is needed: ionization cooling

Build a section of cooling channel long enough to provide measurable 
cooling (10% ) and short enough to be affordable and flexible
Wish to measure this change to 1%
Requires measurement of emittance of beams into and out of cooling channel to 0.1% !
Cannot be done with conventional beam monitoring device
Instead perform a single particle experiment:

High precision measurement of each track (x,y,z,px,py,pz,t,E)
Build up a virtual bunch offline
Analyse effect of cooling channel on many different bunches
Study cooling channels parameters over a range of initial beam momenta and 
emittances
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MICE setup: cooling + diagnostics

Cools and measures about 100 muons/s



Muon Emittance measurement
G4MICE simulation of Muon traversing MICE Each spectrometer measures 

6 parameters per particle  
x  y   t  x’ = dx/dz = Px/Pz   

y’ = dy/dz = Py/Pz   t’ =dt/dz 
=E/Pz

Determines, for an ensemble (sample) of N particles, the moments:
Averages <x> <y> etc…
Second moments:   variance(x)   σx

2 = < x2 - <x>2 > etc…
covariance(x) σxy = < x.y - <x><y> >  

Covariance matrix

M = 
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Getting at e.g. Getting at e.g.  σ σxx’’tt’’
is essentially impossibleis essentially impossible
with multiparticle bunch with multiparticle bunch 
measurements measurements 

Compare Compare εεin in with with εεoutout
Evaluate emittance with:
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TOF station requirements
Tof resolution can be

expressed as:
• Exp trigger, 

upstream/downstream PID 
and measure of t vs RF

• Work in a harsh
environment (high incoming
particle rate, high fringe
fields from solenoids, X 
rays from converted e-)
with good timing 
performances (σt~50 ps) 

elec

pe

plPMTsc

t N
2

22
int

2

σσσσσ +
++

=

Some points to look
to have high
resolution TOFs

• σpl dominated by geometrical dimensions  ∼√(L/Npe)
• σscint ∼ 50-60 ps (mainly connected with produced number of   
γ’s fast and scintillator characteristics, such as risetime)
•σPMT PMT TTS (typically 150-300 ps)                               

+ ENVIRONMENT
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TOF design
• “conventional” X/Y 
scintillator structure with 
readout at both ends, to 
provide redundancy & 
intercalibration with inc. µ 

• problem: choice of PMTs
for high incident particle 
rate (1 MHz)  and solenoid 
B fringe field

Figure 4: B‖ at the position of TOF2 with the 100 mm iron shield.
Figure 5: B⊥ at the position of TOF2 with the 100 mm iron shield.

B// ~ 200-300 G, Bperp ~ 1K G

Studies with fast conv. 
PMTS or fine-mesh PMTs
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Exp. setup for PMT test: extensive studies

•Light source: Hamamatsu fast 
PLP-10 laser ( λ≈405 nm, FWHM 
60 ps, 250 mW peak power) 
•Optical system: x,y,z flexure 
movement + lenses/ filters to 
inject light into a CERAM/OPTEC 
multimode fiber (spread 15 ps/m) 
•Optical signal 1-2000 p.e., in 
most tests 200- 300 p.e. 
(compatible with a MIP crossing a 
typical scintillator)
•Light monitor with a laser 
powermeter

Gain, timing and rate 
measurements for 1”, 
1.5”, 2” fine-mesh PMTs
and conv R4998 PMTsPMT under test

VME acquisition with TDC, QADC 
measurements (P.H. + timing)
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PMTs tests: Fine Mesh Photomultiplier Tubes

• Secondary electrons accelerated parallel to the B-field.
• Gain with no field: 5 x 10 5 – 10 7

• With B=1.0 Tesla: 2 x 104 - 2.5 x 10 5

• Prompt risetime and good TTS
• Manufactured by  Hamamatsu Photonics

Measures at INFN LASA laboratory to study behaviour
in B field (up to 1.2 T ) as respect to gain, rate capability,
timing

R5505 R7761 R5924
Tube diameter 1” 1.5” 2 “

No. Of stages 15 19 19

Q.E.at peak .23 .23 .22

Gain (B=0 T) typ 5.0 x 10 5 1.0 x 10 7 1.0 x 10 7

Gain (B=1 T) typ 1.8 x 10 4 1.5 x 10 5 2.0 x 10 5

Risetime (ns) 1.5 2.1 2.5

TTS (ns)  0.35 0.35 0.44
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Rate effects (as a function of HV)
Gain in B field (various orientations)

• rate capability is limited by
max anode mean current
(tipically 0.1mA for a 2”
R5924 PMT)

• With very high particle
rates: try to reduce mean
current

θ > critical angle

G(B)/G(B=0T)

B(T)

2”

θ

B

PMT axis
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Use instead conventional PMTs: lower 
cost, better support from Hamamatsu

• Shielding issues: local or global shield (cage)
• Rate issue (active divider or booster)

Rate issues 

Shielding issue
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With an external cage B field is reduced to 
tolerable levels for conventional  R4198 PMTs
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RF background: yet another problem 

• RF cavities produce electron due to field 
emission 

• converted to x-rays in absorbers 
• causing backgrounds in trackers and TOF 
stations
• in phase with muons we want (peak at RF 
crest)

• Emission rate rises very steeply with electric 
field and magnetic field (1.5-2.5 t at MICE 
cavity location)
• test problem with MTA setup at FNAL
• rates: ~26KHz/cm2 for 8 MV/m at B=0 at 4.5 
m f rom RF cavity, with energy deposit ~ 400-
600 KeV (for a MIP ~5 MeV)

Fiber tracker
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BTF testbeam
Energy range 25-750 MeV e-/e+

Max rep rate 50 Hz
Pulse duration 10 ns

Current/pulse 1-1010 particles

 MCA BC420 - 6cm x=20cm REPSOL
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σt~45 ps

• tests with e at BTF LNF 

• different scintillator and PMTs
used : best BC4040 or BC420 + 
R4998 PMTs

• fast MCA analysis

• Similar results with final 
electronics (new caen V1290 
TDC and V1724 FADC +custom 
splitter/stretcher)



PID downstream: TOF2 inside MICE  
Upstream:

• TOF0/1  with 10m path, ~60 ps resol.  
• Cherenkov
π/µ separation at better than 1% at 300 

MeV/c
Downstream:

0.5% of µ�s decay in flight: need electron 
rejection at 10-3 to avoid bias on emittance

reduction measurement
• TOF2 hodoscope
• Calorimeter for MIP vs E.M. Shower

Purity Efficiency

∆ε/εtrue

“PID Certainty” estimate of the 
probability that a particle is a muon

(0 definitely not a muon) 

Underestimating downstream emittance
by about 2-3 per mil
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Conclusions

“conventional” scintillator based TOF stations
in an “unconventional” environment: high particle

rate, B fringe fields, X-rays from converted e from RF
needs a lot of tests for components
soon to work in MICE experiment
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