

Antony Sarrat

Dapnia, CEA Saclay

Micropattern based TPC for the T2K tracking system

On behalf of the T2K TPC group

University of British Columbia, University of Victoria and TRIUMF, Canada DSM/Dapnia, CEA/Saclay, and LPNHE, Paris-VI-VII, France RWTH Aachen University, Germany INFN, Sezione di Bari, Italy Valencia University and Universitat Autonoma de Barcelona, Institut de Fisica d'Altes Energies, Spain DPNC, Section de Physique, University of Geneva, Switzerland

dapnia

T2K Goals and Setup

• Measurement of v_e appearance: discovery of non zero θ_{13} down to $\sin^2 2\theta_{13} \sim 0.01$

• Measurement of v_{μ} disappearance: improve accuracy for $\sin^2 2\theta_{23}$ and Δm_{23}^2

(down to $\sim 1\%$ and $\sim 2\%$ respectively)

July 19, 2007

A. Sarrat, EPS HEP 2007, Manchester, UK

dapnia

The Near Detector

- UA1 magnet provides 0.2 T B field
- Inner volume: $3.5 \times 3.6 \times 7.0 \text{ m}^3$
- Front optimized for π^0 from NC
- Rear optimized for CC studies
- Surrounded by ECAL and muon detector
 - July 19, 2007

A. Sarrat, EPS HEP 2007, Manchester, UK

Measure neutrino beam properties and neutrino interaction cross sections

- Measure v_{μ} beam prior to oscillation
- Measure intrinsic v_e contamination
- Study NC π^0 production
- Study non QE ν cross-section

TPC performances

- 10% momentum resolution at 1 GeV/c
- 10% dE/dx resolution for e/μ identification

saclay

TPC Design

Instrumented with bulk Micromegas

- ◆ 12 modules / endplate
- 1726 pads / module
- ◆ 9.7 x 6.9 mm² pads
- 2.5 m x 2.5 m x 0.90 m (outer)
 2.0 m x 2.3 m x 0.76 m (inner)
 - \rightarrow max. lever arm: 72 cm
 - \rightarrow drift distance up to 100 cm
- ◆ B = 0.2 T
- $E_{drift} \sim 200 \text{ V/cm}$
- $V_{drift} \sim 8 \text{ cm/}\mu\text{s}$
- Gas: Ar CF_4 iC_4H_{10} 95-3-2 (%)

~ 120k channels

July 19, 2007

A. Sarrat, EPS HEP 2007, Manchester, UK

saclay

 $\mathbf{4}$

TPC Field Cage

Field cage developed and to be constructed at Triumf

Drift field distortions studied with COMSOL Multiphysics.^{0.6} Displacement < 100 μm _{0.2}

saclay

July 19, 2007

TPC Field Cage

Special care is taken about the rectangular shape of the TPC.

- Built at Triumf and operated at University of Victoria
- Aluminium strips on the cathode are targets for the laser calibration system
- dapnia 6

Bulk Micromegas

July 19, 2007

Readout Electronic

- 1 data concentrator card per readout plane (= 12 mezzanine cards)
- 1 merger PC per 3 TPC (data reduction, formatting)
- ND280 DAQ

ASIC Characteristics

Number of channels		72
Number of time bins		511
Dynamic Range/Gains		120fC to 600fC (4 values) on 12 bits
Max Range/Noise with detector (Requirements)		1000 (750 e- rms noise for 120fC range)
I.N.L		< 1.5%
Power Consumption		7mW / channel
Sampling Frequency		1MhHz to 50MHz
Readout Frequency		20 – 25MHz
Shaping: Unipolar; Semi-Gaussian; 16 peak times: 100ns to 2µs		
Signal Polarity	Negative(TPC) or Positive	
Calibration Mode	1 common external cap.	
Test Mode	1 cap. for each channel	

Technology: AMS CMOS 0.35μm Area: 7546μm x 7139 μm Package: LQFP 160 pins Number of transistors: 400,000

Designed and build at CEA Saclay

AFTER: ASIC For TPC Electronic Readout

Test of Bulk Micromegas

C Performances

July 19, 2007

A. Sarrat, EPS HEP 2007, Manchester, UK

Latest Test Results

Modules with final design. A new manufacturing technique improves the gain uniformity and energy resolution. Ar(95%) / $iC_4H_{10}(2\%)$ / $CF_4(3\%)$ ASIC: $t_p = 200$ ns and $f_s = 20$ MHz $V_{mesh} = 370$ V (gain ~ 2200) $E_{drift} = 200$ V/cm MM07

Energy resolution (σ) 9% @ 5.9 keV

2007	Construction of a full size TPC prototype	
Sept. 2007	Test of MM modules with T2K's electronic at CERN	
Early 2008	Tests with TPC prototype and electronics at TRIUMF	
2007 - 2009	Construction of TPCs and MM modules	
Early 2009	Full system tests at TRIUMF	
Summer 2009	Shipping to JPARC	
Fall 2009	Commissioning	

T2K Data Taking: Fall 2009

A. Sarrat, EPS HEP 2007, Manchester, UK

Micromegas Test Bench

Goal

- Absolute energy calibration
- -Relative pad-per-pad fluctuations
- Time stability of the gain

Setup

- Small drift chamber (20.51)
 61.6 x 44.4 x 7.5 cm³ (4cm drift)
- P and T monitoring
- G10 grid:
 - ensure flatness of cathode for drift field uniformity
 - HV protection

pad-per-pad calibration: strong moving source

15

saclay

Developed at Université de Genève, DAQ system from IFAE

July 19, 2007

A. Sarrat, EPS HEP 2007, Manchester, UK

Readout

3 TPCs
2 planes per TPC
12 modules per plane
6 FECs per module
(4 ASIC per FEC)
288 pads per FEC
124 416 pads in total

Module size: 36x34 cm² Pad size: 6.9 x 9.7 mm²

> dapni<u>a</u> CECI saclay

C. Hearty, J. Wendland, University of British Columbia, Canada

P. Birney, A. Dowling, K. Fransham, C. Hansen, D. Karlen, R. Langstaff, M. Lenckowski, P. Poffenberger, M. Roney, University of Victoria and TRIUMF, Canada

W. Faszer, R. Henderson, I. Kato, A. Konaka, K. Olchanski, R. Openshaw, R. Poutissou, TRIUMF, Canada

P. Baron, J. Bouchez, M. Boyer, D. Calvet, Ch. Cavata, P. Colas, X. De La Broise, E. Delagnes, A. Delbart, F. Druillole, S. Emery, A. Giganon, I. Giomataris, E. Mazzucato, F. Nizery, F. Pierre, J.-M. Reymond, J.-L. Ritou, A. Sarrat, M. Zito, **DSM/Dapnia**, **CEA/Saclay**, **91191**, **Gif-sur-Yvette**, **France**

J. Dumarchez, LPNHE, Paris-VI-VII, Paris, France

S. Roth, A. Stahl, RWTH Aachen University, D-52056 Aachen, Germany

M.G. Catanesi, E. Radicioni, INFN, Sezione di Bari, Bari, Italy

M. Sorel, A. Cervera-Villanueva, J.J. Gomez-Cadenas, J. Catala, E. Couce, Valencia University, Valencia, Spain

J. Alcaraz, G. Jover, T. Lux, F. Nova, A.Y. Rodriguez, F. Sanchez, Universitat Autonoma de Barcelona, Institut de Fisica d'Altes Energies, Bellaterra E-08193, Barcelona, Spain

N. Abgrall, P. Bene, A. Blondel, A. Bravar, M. Di Marco, D. Ferrere, F. Maschiocchi, S. Pernecker, E. Perrin, M. Ravonel, R. Schroeter, **DPNC, Section de Physique, University of Geneva CH1211 Geneva 4, Switzerland**

