Hadronic Tau Decays at BaBar

Ian M. Nugent University of Victoria

BaBar Collaboration

EPS HEP 2007 University of Manchester, Manchester England

University | British Columbia of Victoria | Canada

Email:inugent@uvic.ca

Strange and non-Strange t-Decays

Strange τ Deca	ays:
Mode	${\cal B}(10^{-3})$
<i>K</i> ⁻	6.81 ± 0.23
$K^{-}\pi^{0}$	4.54 ± 0.30
$ar{K}^0\pi^-$	$8.78 {\pm} 0.38$
$K^-\pi^0\pi^0$	0.58 ± 0.24
$ar{K}^0\pi^-\pi^0$	3.60 ± 0.40
$K^-\pi^+\pi^-$	3.30 ± 0.28
$K^-\eta$	0.27 ± 0.06
$(\bar{K}3\pi)^-$ (estimated)	$0.74{\pm}0.30$
$K_1(1270)^- \rightarrow K^- \omega$	0.67 ± 0.21
$(\bar{K}4\pi)^-$ (estimated) and $K^{*-}\eta$	0.40 ± 0.12
Sum	29.69 ± 0.86

lan Nugent

t-Spectral Density

The BaBar Detector at SLAC

DIRC used for K/p separation

Excellent K/p Separation

The Number of t's at BaBar

The $\mathbf{t}^{\mathbf{R}}\mathbf{K}^{\mathbf{p}}\mathbf{n}$ analysis uses 230fb⁻¹ Data (on-peak and off-peak) and the $\mathbf{t}^{\mathbf{R}}\mathbf{h}^{\mathbf{h}}\mathbf{h}^{\mathbf{h}}\mathbf{n}$ analysis uses 342fb⁻¹ Data (on-peak and off-peak)

Cross Section at BaBar Integrated Luminosity [fb⁻¹] 000 000 000 000 BaBar $\sigma(\tau^+\tau^-)=(0.919\pm0.003)$ nb PEP II Delivered Luminosity: 468.87/fb arXiv:0706.3235 [hep-ph] BaBar Recorded Luminosity: 451.10/fb 350 Off Peak Luminosity: 41.61/fb Experiment Number of τ Pairs Delivered Luminosity **Recorded Luminosity** Off Peak 250 LEP ~3×10⁵ 200 CLEO ~1×10⁷ 150 **BaBar** ~4×10⁸ 100 ~7×10⁸ Belle 50

2001

t-Pair Events

τ-Pair Signature:Leptonic+Hadronic Decay

The hadronic decay and lepton tag are well separated in space.

This allows the hemisphere to be separated with the thrust in the CM.

CM Frame

Tau Energy $\sim 5.29 \text{GeV}$ Due to missing neutrinos, the τ decay events have missing energy/momentum.

Branching Ratio for t⁻® K⁻p⁰n

Branching Ratios for t⁻® h⁻h⁺h

arXiv:0707.2981 [hep-ex]

$$\sum_{j} M_{ij} N_{j}^{Sig} = (N_{i}^{Data} - N_{i}^{Bkg(MC)})$$

$$\Rightarrow N_{j}^{Sig} = \sum_{i} (M^{-1})_{ij} (N_{i}^{Data} - N_{i}^{Bkg(MC)})$$

$$Br_{j} = \frac{N_{j}^{Sig}}{2L\sigma_{\tau^{+}\tau^{-}}}$$

i=Channels Selected
j=Decay Mode

Particle Identification (PID) Efficiency Matrix						
Candidates	Decay Modes (MC Truth)					
	p ⁻ p ⁻ p⁺u	K⁻p⁻p⁺u	K⁻p⁻K⁺u	K⁻K⁻K ⁺u		
p ⁻ p ⁻ p⁺u	97.40%	22.49%	4.73%	1.02%		
K⁻p⁻p⁺u	1.42%	74.87%	16.43	6.38%		
K⁻p⁻K⁺u	0.01%	0.49%	59.63%	25.54%		
K ⁻ K ⁻ K⁺u			0.26%	50.87%		
Characteristic Efficiency (excluding PID)						
e	2.8%	3.1%	3.5%	3.9%		
lan Nugent	EPS HEP 2007				8	

Branching Ratios for t⁻**®** h⁺h⁺h

f Peak in KpKn and KKKn

Update to |**V**_{us}|

UPDATED

t⁻® K⁻p⁰u arXiv:0707.2922 [hep-ex] **t⁻® K⁻p⁻p⁺u** arXiv:0707.2981 [hep-ex]

Conclusion

Maltman and Wolfe predict that the uncertainty on V_{us} from τ decays can be measured more precisely then the world average (below 0.0010) with measurements from BaBar and Belle (hep-ph/0703314v1). In addition, the determination of V_{us} from tau decays is currently dominated by experimental uncertainties. Ian Nugent **EPS HEP 2007** 12