Leptonic B Decays at BaBar **European Physics Society Conference on High Energy Physics** On the behalf of the BaBar collaboration Diego Monorchio Manchester 19-25 July 2007 **INFN Napoli**

Outline

Recent results from the BaBar collaboration

■ B→ t∨

Semileptonic tag analysis

Hadronic tag analysis

 $= B \rightarrow \ell^+ \ell^- \gamma$

$B \rightarrow \tau v$ experimental challenges

 $\begin{array}{l} \mathscr{B}^{SM}(B \rightarrow \tau v) \sim 10^{-4} \\ \mathscr{B}^{SM}(B \rightarrow \mu v) \sim 10^{-7} \\ \mathscr{B}^{SM}(B \rightarrow e v) \sim 10^{-10} \end{array}$

 $B \rightarrow \tau v$ helicity favored but experimentally more difficult

Main τ decay modes:

- $\bullet \sim 71\%$ of the total τ width
 - Final state contains:
- •1 track (+ 1 π^0 in the ρ channel)
- -2-3 neutrinos
- Weak kinematical constraints
- Need to clean the experimental enviroment
- Reconstruct the other B (tag B) of the event

Tag technique

Hadronic:

 $\bullet B^{-} \rightarrow D^{(*)0} \ n_{\eta} \pi^{\pm} \ n_2 K^{\pm} \ n_3 K_0^0 \ n_4 \pi^0$ $(n_1 + n_2 \le 5; n_3 \le 2; n_4 \le 2)$ -Full reconstruction

• Use of beam energy constraints to

build discriminating variables

$$n_{\text{ES}} = \sqrt{(E^*_{\text{beam}})^2 - (p^*_{\text{B}})^2}$$
$$\Delta E = E_{\text{B}} - E^*_{\text{beam}}$$

Higher purity/lower statistics

Semileptonic:

$$B^{-} \rightarrow D^{(*)0} \ell \nu (\ell = e, \mu)$$

Take advantage of the high

semileptonic BFs Partial reco (additional neutrino)

Higher statistics/lower purity

 Look for signal in the rest of the event

								I	I	g	I					9
		's and tracks				bands with			Observed events	in on-resonance dat	59	43	125	18	245	iv:0705.1820
tag		utral cluster			agged events	ta in E _{extra} side			xpected background	events	44.3 ± 5.2	39.8 ± 4.4	120.3 ± 10.2	17.3 ± 3.3	221.7 ± 12.7	to PRD: arX
ptonic		E (extra nei			ed in double t	rapolating da			T E	decay mode	$ au^+ ightarrow e^+ u\overline{ u}$	$ au^+ o \mu^+ u \overline{ u}$	$ au^+ o \pi^+ \overline{ u}$	$ au^+ o \pi^+ \pi^0 \overline{ u}$	All modes	Submitted
semile		able E_{extra} : Σ	n:	>	model validat	aluated by ext			∳_ -●_ _●	 		_) = 346 fb⁻ ¹	-		0.8 1 (tra(GeV)
with	1cy: 0.66%	minating vari	ndent selectio	0.25-0.48 Ge ^v	ncy and E _{extra}	ackground ev		ata –	pected bkg	gnal shape 🖕		•			_	0.4 0.6 E_{ex}
$3 \rightarrow \tau v$	Tag efficier	Most discri	Mode deper	• $E_{extra} < 0$	Tag efficier	Expected by	Saliie faulo s	D 	200 $-$ Ex			100		50		0 0.2
	•	•	•		•	•		(Λ)	θĢ	1.0)	/sə]	រោរប	Е			

$B \rightarrow \tau v$ with hadron	nic tag	Ĵ 7	$c = 346 \text{fb}^{-1}$	
G 20 20 20 20 20 20 20 20 20 20 20 20 20	$\Gamma agged 5.9x10^{5}$ $(\varepsilon^{tag} = 0.15\%)$	fully recons	structed B meso	ons
2000.0)/20i111	 Use m_{ES} to c background 	liscriminate	combinatorial	
	Mode dependen	t selection:		
20	 Veto on exti 	a charged th	acks	
10	 Particle ider 	ltification		
$m_{\rm FS} = 5.23 + 5.24 + 5.25 + 5.26 + 5.27 + 5.28 + 5.29 + 5.3 + 5.3 + 5.29 + 5.3 + 5.29 + 5.3 + 5.29 + 5.3 + 5$	• $E_{extra} = \Sigma E$ (e	xtra neutral	clusters)	
	• $E_{extra} < 0$.	1-0.29 GeV		
S 140 combinatorial background		BaB	ar preliminary	
	τ decay	Expected	observed	
	mode	background	1	
	τ→evv	1.5 ± 1.4	4	
BABAR preliminary	τ→μνν	1.8 ± 1.0	5	
	$\tau \rightarrow \pi v$	6.8 ± 2.1	10	
	$\tau \rightarrow \pi \pi^0 v$	4.2 ± 1.4	5	
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 H	All modes	14.3 ± 3.0	24	2
- extrav v v				

g Fraction	$\mathcal{L}(s+b) = \Pi_{i=1}^{4} \frac{e^{(s_i + b_i)}(s_i + b_i)}{n_i} \qquad s_i = N_B \epsilon_i \mathcal{B}$	$Q(\mathcal{B}) = -2\ln(\mathcal{L}(s+b) / \mathcal{L}(b))$	Signal significance:	Bemileptonic tag analysis: $\mathcal{B}(B \rightarrow \tau v) = (0.9 \pm 0.6 \pm 0.1) \times 10^{-4} [1.3\sigma]$	Hadronic tag analysis: BaBar preliminary $\mathscr{B}(B \rightarrow \tau v) = (1.8^{+1.0}_{-0.9} \pm 0.3) \times 10^{-4}$ [2.2 σ]	Combined Result: BaBar preliminary [2.6 σ] $\mathcal{B}(B \rightarrow \tau v) = (1.2 \pm 0.4^{\text{stat}} \pm 0.3^{\text{bkg}} \pm 0.2^{\text{eff}}) \times 10^{-4}$	SM prediction: $\mathcal{B} = (1.6 \pm 0.4) \text{ x} 10^{-4}$	Belle result: $\mathcal{B} = (1.79^{+0.56} + 0.46) \times 10^{-4} [3.5\sigma]_{8}$
$B \rightarrow \tau v Branching$	 Use the background predictions and the number 	of observed events to obtain the BF confidence interval.	 Build likelihood combining 	poissonial probabilities of all the τ channels	O BABAR preliminary		-6 -6 -7 -7 -7 -7 -7 - Combined	0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 Branching Fraction

Interpreting the result

$$B_{SM}(B \rightarrow \tau v) = \frac{G_F^2 m_B}{8\pi} m_\tau^2 (1 - \frac{m_\tau^2}{m_B}) f_B^2 |V_{ub}|^2 \tau_B$$
Using $f_B = 223 \pm 15 \pm 26$ (lattice QCD)
the BF measurement provides a constraint on the p-n plane
on the p-n plane

The comparison between the SM expectation and the BaBar combined result allows to exclude regions on the (m_{H+},tanβ) plane

$$\mathscr{B}(\mathbf{B} \rightarrow \tau \mathbf{v}) = \mathscr{B}_{\mathrm{SM}}(\mathbf{B} \rightarrow \tau \mathbf{v}) \times \left(1 - \tan^2 \beta \frac{m_{B^{\pm}}^2}{m_{H^{\pm}}^2}\right)^2$$

റ

Sher and Yuan, Phys. Rev. D44, 1461 (1991)

$B \rightarrow K \tau \mu$

- Search based on 346 fb⁻¹
- Look for signal on the recoil of hadronic tag Bs
- $B \rightarrow D^{0}(K\pi)\mu\nu$ events: control sample to normalize the signal BF
- Signal divided into three channels based on tau daughter: electron, muon, and pion.
- τ four momentum obtained by subtraction:

•
$$p_r = p_{Btag} - p_K - p_{\mu}$$

Events in Expected signal window background N_e = 1 b_e = 0.5 ± 0.3 N_{\mu} = 0 b_{\mu} = 0.6 ± 0.3 N_{\mu} = 0 b_{\mu} = 0.6 ± 0.3 N_{\mu} = 0 b_{\mu} = 0.6 ± 0.3 N_{\mu} = 0 0 0.5 1 1.5 0 m (GeV/c) nr (

signal region

Summary

■ B→t∨

- $\mathcal{B} = (1.2 \pm 0.4^{\text{stat}} \pm 0.3^{\text{bkg}} \pm 0.2^{\text{eff}}) \times 10^{-4}$
- 2.6σ significance (3.2σ stat.)
- Set constraints on New Physics parameters

Β→Κτμ

- First search ever done
- No evidence of signal
- $B < 7.7 \text{ x}10^{-5}$ @90% CL
- B→ℓ⁺ℓ-γ
- First search ever done
- $\mathcal{B}(B \rightarrow e^+e^-\gamma) < 1.2x 10^{-7} @90\% CL$
- $\mathcal{B}(B \rightarrow \mu^+\mu^-\gamma) < 1.5 \times 10^{-7}$ @90% CL

Recent BaBar results

Backup slides

BR helicity suppressed

- BR_{SM}(μv)=(4.7 ± 0.7)x10⁻⁷
- $BR_{SM}(ev)=(11.1 \pm 0.1)\times 10^{-11}$

Search for signal on the recoil of hadronic tagged events

■Only one neutrino → reconstruction of tag B completely constraints

kinematics

 Signal B rest frame estimated from tag B 4-vector, allowing to exploit 2-body signal kinematics.

$B \rightarrow e/\mu v$

- Analysis based on 209 fb⁻¹
- expected backgrounds of 0.23 and 0.12 events respectively Observed 0 events in each of e and m channels with

Method free from experimental issues related to backgorund modeling but currently statistically limited

5
$\langle \cdot \rangle$
$\mathbf{\Lambda}$
Щ

- Presence of photon removes helicity suppression
- BR enhanced
- Universality of leptonic branching fraction recovered
- Measuring the BF in a limited phase space region provide information on the QCD parameter $\lambda_{\rm B}$

$$\Delta \mathcal{B} = \alpha \frac{G_F^2 |V_{ub}|^2}{32\pi^4} f_B^2 \tau_B m_B^3 \left[a + bL + cL^2 \right]$$

a, b, c: (model independent) computable constants $L = (m_B/3)(1/\lambda_B + 1/(2m_b))$

 λ_{B} : first inverse moment of B light cone distribution amplitude (enters calculations of BF of hadronic B decays) $\sim \Lambda_{\rm QCD}$

 $B(B \rightarrow l_V\gamma) \sim (1-5) \times 10^{-6}$ (Korchemsky, Pirjol and Yan Phys Rev D61, 114510, 2000) SM expectation for the full BR

5
\sim
\mathbf{T}
Ď

Measure partial BF in the phase space region:

 $1.875 < E^*_{\ell} < 2.850 GeV$, $0.45 < E^*_{\nu} < 2.35 GeV$, $\cos\theta_{\ell\nu} < -0.36$

Identify lepton and signal photon and perform an inclusive reconstruction (i.e. 4-vector sum) of the other B

Neutrino 4-vector obtained from missing momentum vector

Extract signal from ML fit to m_{ES} and neutrino E-|p| in signal and sideband regions

No evidence of signal set UL at 90% CL

$$\Delta B(B \rightarrow y\mu\nu_{\mu}) < 2.1 \times 10$$

$$\Delta B(B \rightarrow ye\nu_{e}) < 2.8 \times 10$$

$$\Delta B(B \rightarrow y\ell\nu_{\ell}) < 2.3 \times 10$$

9

9

(Bayesian limits with flat prior in BF) With some input from theory, joint fit translates to:

Combined BaBar+Belle $B \rightarrow \tau v$

- BaBar combined (346 fb⁻¹): Preliminary
- $\mathcal{B}(B \rightarrow \tau v) = (1.2 \pm 0.4^{stat} \pm 0.3^{bkg} \pm 0.2^{eff}) \times 10^{-4}$
- Belle had tag (414 fb⁻¹): PRL 97,251802 (2006)
- $\mathcal{B}(B \rightarrow \tau v) = (1.79^{+0.56}_{-0.49} + 0.46) \times 10^{-4}$
- BaBar+Belle (Gaussian weighted average)
- $\mathcal{B}(B \rightarrow \tau v) = (1.41 \pm 0.43) \times 10^{-4}$

The $m_{\rm H}$ vs. tan β plot

in two Higgs doublet extensions of the SM:

$$\mathscr{B}(\mathbf{B} \rightarrow \tau \mathbf{v}) = \mathscr{B}_{\mathrm{SM}}(\mathbf{B} \rightarrow \tau \mathbf{v}) \times \left(1 - \tan^2 \beta \frac{m_{B^{\pm}}^2}{m_{H^{\pm}}^2}\right)^2$$

- For a fixed value of tanß and increasing values of $m_{\rm H}$:
- Small higgs mass: the BF is enhanced (ruled out by the measurement)
- 2) The BF approach the SM prediction and can not be resolved over the uncertainty (start the gap).
 - 3) The NP factor become less than 1 and the BF is suppressed but still we are not able to resolve it.
- 4) The BF is significantly suppressed (ruled out by the measurement)
 - The suppression term approach 1 and we loose exclusion again

 $\widehat{\boldsymbol{S}}$

 $B \rightarrow \tau v$ with semileptonic tag

Systematics

	TIMER	מאוזאי			
Selection criteria	τ decay mode	$e^+ \nu \overline{\nu} \mu$	$+ \overline{\nu \nu}$	$\pi^+\overline{\nu}$	$\pi^+\pi^0\overline{\nu}$
mode e^+ μ^+ π^+ $\pi^+\pi^0$	Tracking	0.5	0.5	0.5	0.5
$M_{\rm miss}({\rm GeV/c^2})$ [4.6, 6.7] [3.2, 6.1] $\ge 1.6 \le 4.6$	Particle Identification	2.5	3.1	0.8	1.5
$p_{\text{signal}}^{*}(\text{GeV/c}) \leq 1.5$ – ≥ 1.6 ≥ 1.7	π^0				2.9
$R_{\rm cont}$ [2.78, 4.0] > 2.74 > 2.84 > 2.94 $E_{\rm cont}$ (7.17) = 7.94 = 2.94	EMC K_L^0		l	3.8	
$\frac{L_{\text{extra}}(\text{UeV})}{\text{Efficiency}(\%)} < \frac{\sqrt{100}}{4.2 \pm 0.1} < \frac{\sqrt{100}}{2.4 \pm 0.1} < \frac{\sqrt{100}}{4.9 \pm 0.1} < \frac{\sqrt{100}}{1.2 \pm 0.1}$	IFR K_L^0		3.	3	
	$E_{ m extra}$		3.	4	
	signal B		5.	5	
	$\operatorname{tag} B$		3.	6	
	$N_{B\overline{B}}$		÷.	,	
	Total		6.	9	

 $f_B \cdot |V_{ub}| = (7.2^{+2.0}_{-2.8}(\text{stat.}) \pm 0.2(\text{syst.})) \times 10^{-4} \,\text{GeV}$ $\mathcal{B}(B^+
ightarrow au^+
u) < 1.7 imes 10^{-4}$ 90% CL

 ${\cal B}(B^+ o au^+
u) = (0.9 \pm 0.6 ({
m stat.}) \pm 0.1 ({
m syst.})) imes 10^{-4}$

BaBar:semileptonic tag result

 $B \rightarrow \tau v$ with hadronic tag

•	riteria	
		う ヨ ろ ヨ ろ
	19014	こうして
ζ		2

Selection cr	iteria				% Contributions to	the
Variable	$\tau^+ \to e^+ \nu \overline{\nu} \ \tau^+$	$\rightarrow \mu^+ \nu \overline{\nu} \ \tau$	$^+ \rightarrow \pi^+ \overline{\nu} \ \tau^+$	$\rightarrow \pi^+ \pi^0 \overline{\nu}$	systematic uncertait the BF due to signa	l on
Eextra (GeV)	< 0.160	< 0.100	< 0.230	< 0.290	selection efficiency	
π^0 multiplicity	0	0	≤ 2	n.a.	MC statistics	3.6
Track multiplicity	1	1	≤ 2	1		
$ cos heta_{TB}^* $	≤ 0.9	≤ 0.9	≤ 0.7	≤ 0.7	Farticle Identification	2.0
$p^*_{ m trk}({ m GeV}/c)$	< 1.25	< 1.85	> 1.5	n.a.	π^0	0.6
$cos heta^*_{ m miss}$	< 0.9	n.a	< 0.5	< 0.55	Tracking	5.5
$p^*_{\pi^+\pi^0}({ m GeV}/c)$	n.a.	n.a.	n.a.	> 1.5		<u>)</u>
ho quality	n.a.	n.a.	n.a.	< 2.0	Lextra	г л
$E_{\pi^0}~({ m GeV})$	n.a.	n.a.	n.a.	> 0.250	Total	16.5
Efficiency(%)	3.1 ±0.2	1.7±0.1	2.9±0.2	2.2±0.2		

BaBar: hadronic tag results

 $\mathcal{B}(B^+ \to \tau^+ \nu) = 1.8^{+1.0}_{-0.9} (\text{stat.+bkg}) \pm 0.3 (\text{syst.}) \times 10^{-4}$ $f_B \cdot |V_{ub}| = (10.1^{+2.8}_{-2.5}(\text{stat.}) \pm 0.8(\text{syst.})) \times 10^{-4} \text{ GeV}$

without pkg. uncertitude) without bkg.

Significance: 2.2σ (2.7σ

- 3^{rd} and 2^{nd} generations both for the quarks (b,s) and the leptons (τ,μ) . Particularly attractive since it involves couplings of the new field with
- If quark and lepton couplings are equal at GUT scale, the branching fraction is sensitive to $\eta_{\mu\tau}^{4}$ since

$$\eta_{ij}^{\text{quark}} = \eta_{ij}^{\text{lepton}} \longrightarrow \eta_{sb} = \eta_{\mu\tau}$$

"Most natural" values for lepton couplings are proportional to

$$\eta_{ij} = \sqrt{m_i m_j} / m_{\tau}$$

$$\eta_{ee} = 0.0003$$
 $\eta_{e\mu} = 0.004$ $\eta_{e\tau} = 0.02$ $\eta_{\mu\mu} = 0.06$ $\eta_{\mu\tau} = 0.24$

$$= 0.0003$$
 $n_{e...} = 0.004$ $n_{e.t} = 0.02$ $n_{....} = 0.02$

See Sher and Yuan, Phys. Rev. D44, 1461 (1991) for the full story.

				25
	followed by $D^{(*)0} \rightarrow K^- X$. al states. $\rightarrow K^- \tau + \mu^-$ $\rightarrow \pi^+ \overline{\nu}$	f B _{tag}	$\frac{d U}{d \mu} \begin{pmatrix} \epsilon D \mu \nu \\ \epsilon K \tau \mu \end{pmatrix} \begin{pmatrix} \epsilon D \mu \nu \\ \epsilon K \tau \mu \end{pmatrix} \mathcal{B} D \mu \nu$	
	$P_{\mu^-} \vee D^{(*)0} \times A_{\mu^-}$ the same find $B^ B^-$	und (~99%) s opposite-char BF <i>Ratio o</i>	$\frac{\mu}{(\nu)} \begin{pmatrix} \epsilon_{\text{tag}}^{D\mu} \\ \epsilon_{\text{tag}}^{K\tau} \\ \epsilon_{\text{tag}} \end{pmatrix}$	
	are from B s with exactly $\mu^- \overline{\nu}$ π^+ .	e B ⁺ backgrou aon with the c ize the signal <i>nal yield</i>	$= \frac{\left(\frac{N_{K\tau}}{N_{D\mu}}\right)}{\left(\frac{N_{D\mu}}{N_{D\mu}}\right)}$	introl sample ield from fit
μ	backgrounds two examples $B^{-} \rightarrow D^{0}_{-}$ $D^{0} \rightarrow K^{-}$	most all of the kernel in the kernel of the kernel in the	$\mathcal{B}_{K\tau\mu} =$	S >
$B \rightarrow K \tau$	 The main Here are 	 Can kill al invariant i the D mas Events us 	Signal branching fraction	

- Expected backgrounds estimated from m_{τ} sideband
- Signal-to-sideband ratio taken from MC

$\epsilon_i ~(\%)$	$3.28 \pm 0.13 \pm 0.22$	$2.09 \pm 0.10 \pm 0.19$	$2.18 \pm 0.11 \pm 0.24$
n_i	1	0	7
b_i	0.5 ± 0.3	0.6 ± 0.3	1.8 ± 0.6
BG ratio	0.10 ± 0.05	0.30 ± 0.15	0.13 ± 0.04
$N_{\rm sb}$ (data)	IJ	2	14
$N_{\rm sb}~({ m MC})$	5.2 ± 1.3	0.7 ± 0.5	6.9 ± 1.6
Channel	electron	muon	pion

 $B \rightarrow \ell^+ \ell^- \gamma$

Mode	n_{obs}	n_{bg}^{exp}	ϵ_{sig} $(\%)$	N_{UL}	\mathcal{B}_{UL}
$+e^{-\gamma}$		$1.75 \pm 1.38 \pm 0.36$	7.4 ± 0.3	2.82	1.2×10^{-7}
$^+\mu^-\gamma$	1	$2.66 \pm 1.40 \pm 1.58$	5.2 ± 0.2	2.55	$1.5 imes 10^{-7}$

- Main backgrounds from:
- ISR-High order QED
- Rejected by requiring Tracks and photon in well within the fiducial region of the detector and high tracks and clusters multiplicity
- Lepton from J/ ψ or γ from π^0
- Rejected by vetoing on invariant masses
- Continuum
- Rejected by cut on topological variables

$B \rightarrow \ell^+ \ell^- \gamma$

- Backgound
 predictions
 obtained from data
 sideband
 - Signal-to-sideband
 ratio extrapolated
 from Upper and
 Lower sidebands