

Manchester, England July 20, 2007

Di-Boson Production at the LHC

Chia Ming, Kuo National Central University, Taiwan

On behalf of Atlas & CMS

Motivation

The consequence of the non-Abelian structure of the SM self-couplings of gauge bosons

• Probing the coupling between gauge bosons tests the core of the SM

- Deviations from SM would indicate the presence of new physics
- An important, often irreducible, background in the search for new physics

WW, WZ, ZZ Production @ LHC

Di-boson production at collider

• ~~~

- σ_{SM} = 127.5 pb
- sensitive to WWZ and WWγ coupling

• WZ

- σ_{sm} = 57.7 pb
- s channel dominates
- only sensitive to WWZ coupling
- ZZ
 - σ_{SM} = 16.8 pb
 - only t channel at tree level
 - s channel is strongly suppressed at $O(10^{-4})$ level

Triple Gauge-boson Couplings

• Most general description of the TGC vertex by an Lorentz invariant effective Lagrangian

$$\begin{split} L_{WWV}/g_{WWV} &= ig_1^V (W_{\mu\nu}^{\dagger} W^{\mu} V^{\nu} - W_{\mu}^{\dagger} V_{\nu} W^{\mu\nu}) + i\kappa_V W_{\mu}^{\dagger} W_{\nu} V^{\mu\nu} \\ &+ i \frac{\lambda_V}{m_W^2} W_{\lambda\mu}^{\dagger} W_{\nu}^{\mu} V^{\nu\lambda} - g_4^V W_{\mu}^{\dagger} W_{\nu} (\partial^{\mu} V^{\nu} + \partial^{\nu} V^{\mu}) \\ &+ g_5^V \epsilon^{\mu\nu\lambda\rho} (W_{\mu}^{\dagger} \partial_{\lambda} W_{\nu} - \partial_{\lambda} W_{\mu}^{\dagger} W_{\nu}) V_{\rho} \\ &+ i \widetilde{\kappa}_V W_{\mu}^{\dagger} W_{\nu} \widetilde{V}^{\mu\nu} + i \frac{\lambda_V}{m_W^2} W_{\lambda\mu}^{\dagger} W_{\nu}^{\mu} \widetilde{V}^{\nu\lambda} \end{split}$$

V=Z,Y

	\mathbf{g}_1^{v}	Κ _V	λ_v	g_4^{\vee}	\mathbf{g}_{5}^{V}	\tilde{K}_{V}	$\tilde{\lambda}_v$
С	even	even	even	odd	odd	even	even
Р	even	even	even	even	odd	odd	odd
CP	even	even	even	odd	even	odd	odd
SM	1	1	0	0	0	0	0

K. Hagiwara et al. PRD 41, 2113 Chia Ming, Kuo/ NCU, Taiwan

Triple Gauge-boson Couplings

• Most general description of the TGC vertex by an Lorentz invariant effective Lagrangian

$$\begin{split} L_{WWV}/g_{WWV} &= ig_1^V (W_{\mu\nu}^{\dagger} W^{\mu} V^{\nu} - W_{\mu}^{\dagger} V_{\nu} W^{\mu\nu}) + i\kappa_V W_{\mu}^{\dagger} W_{\nu} V^{\mu\nu} \\ &+ i\frac{\lambda_V}{m_W^2} W_{\lambda\mu}^{\dagger} W_{\nu}^{\mu} V^{\nu\lambda} - g_4^V W_{\mu}^{\dagger} W_{\nu} (\partial^{\mu} V^{\nu} + \partial^{\nu} V^{\mu}) \\ &+ g_5^V \epsilon^{\mu\nu\lambda\rho} (W_{\mu}^{\dagger} \partial_{\lambda} W_{\nu} - \partial_{\lambda} W_{\mu}^{\dagger} W_{\nu}) V_{\rho} \\ &+ i\kappa_V W_{\mu}^{\dagger} W_{\nu} \widetilde{V}^{\mu\nu} + i\frac{\lambda_V}{m_W^2} W_{\lambda\mu}^{\dagger} W_{\nu}^{\mu} \widetilde{V}^{\nu\lambda} \end{split}$$

V=Z,Y

	\mathbf{g}_1^{v}	Κ _V	λ_v	\mathbf{g}_{4}^{\vee}	\mathbf{g}_{5}^{v}	$\tilde{\mathbf{K}}_{\mathbf{V}}$	$\tilde{\lambda}_v$
С	even	even	even	odd	odd	even	even
Р	even	even	even	even	odd	odd	odd
CP	even	even	even	odd	even	odd	odd
SM	1	1	0	0	0	0	0

$$\Delta K = K - 1 \quad \Delta \mathbf{g}_{1}^{Z} = \mathbf{g}_{1}^{Z} - 1$$

$$WWZ : \Delta \mathbf{g}_{1}^{Z} \quad \Delta K_{Z} \quad \lambda_{Z}$$

$$WWY : \Delta K_{Y} \quad \lambda_{Y}$$

$$(\mathbf{g}_{1}^{Y} = 1 : EM \text{ gauge invariance})$$

K. Hagiwara et al. PRD 41, 2113 Chia Ming, Kuo/ NCU, Taiwan

EPS HEP2007

4

Anomalous TGC

• A form factor is introduced to avoid unitarity violation at high energies

$$\lambda(s) = \frac{\lambda}{\left(1 + \frac{s}{\Lambda_{FF}^2}\right)^2} \qquad \Delta \varkappa(s) = \frac{\Delta \varkappa}{\left(1 + \frac{s}{\Lambda_{FF}^2}\right)^2} \qquad \Delta g_1^z(s) = \frac{\Delta g_1^z}{\left(1 + \frac{s}{\Lambda_{FF}^2}\right)^2}$$

Signatures of anomalous couplings

- enhancement of cross section
- large scattering angle \rightarrow small rapidity region
- enhancement at high P_T

Chia Ming, Kuo/ NCU, Taiwan

TGC limits from Atlas

- \bullet Using fast simulated WZ, WY and background samples
- $\lambda_{Z_1} \Delta \kappa_{Y_1} \lambda_Y$: a maximum likelihood fit to one dimensional $P_T(V)$ distribution
- $\Delta \kappa_{z,} \Delta g^{I}_{z}$ fit to two dimensional $P_T(Z)$ vs. $P_T(I_W)$ distribution

	Atlas	CDF (WW+WZ)	CDF(Wy+WW+WZ)	95%C.L.
L	30 fb ⁻¹	350 pb ⁻¹	Wγ : 200 pb ⁻¹ WW+WZ : 350 pb ⁻¹	Incl. syst.
λ_Z	(-0.0073, 0.0073)	(0.28, 0.28)	(0.19, 0.17)	
$\lambda_{ m Y}$	(-0.0035, 0.0035)	(-0.28, 0.28)	(-0.18, 0.17)	
$\Delta \kappa_Z$	(-0.11, 0.12)		(0.46, 0.20)	
$\Delta \kappa_{ m Y}$	(-0.075, 0.076)	(-0.50, 0.43)	(-0.46, 0.39)	
$\Delta g^{1}Z$	(-0.0086, 0.011)			

(CDF results : hep-ex/0705.2247, assuming equal WWZ and WWY coupling)

LHC : orders of magnitude improvement over Tevatron Neutral TGC still needs to be explored at the LHC

EPS HEP2007

MC samples for studies @ Atlas

Process	MC data	Process	MC data
ZW⁺ → 2e/2μ + X	26033	ttbar→ l+x	1.96×10 ⁵
ZW ⁻ → 2e/2μ + X	29085	Z(@Peak) → ee/μμ/ ττ	2.30×106
ZZ → 4e, 4μ, 2e2μ	19933	$W \rightarrow e/\mu/t + v$	1.61×10 ⁶
$WW \rightarrow w + x$	32056	W+jets → N + x	1.59×106
ZZ(pythia) →4 l (e,µ)	4.66 ×104	Z+jet→ ee/μμ/ττ	5.80×106
Zbb →4 ℓ	4.99×104	DY $Z/\gamma \rightarrow \ell^+ \ell^-(e, \mu, \tau)$	1.67×107
Zγ <i>→α</i> (e,μ)	2.50×104		

- Signal samples were produced with MC@NLO(v2.3)-Jimmy
 W/Z width effect is not included
- Background samples were produced with PYTHIA 6.2
- No pile-up effect included

WW→IvIv @ Atlas

- Select two isolated leptons with $P_T > 25, 20 \text{ GeV}$
- MET > 30, 35, 40 GeV for e^+e^- , $e\mu$ and $\mu^+\mu^-$
- $M_{ee} \& M_{\mu\mu} > 50 \text{ GeV}; M_{e\mu} > 30 \text{GeV}; \text{Veto } M_Z(ee, \mu\mu)$
- M_T(W⁺W⁻) < 500 GeV
- Vector sum of $E_T(had) < 60$ GeV; Scalar sum of $E_T(had) < 45$ GeV
- P_T(l⁺l⁻) > 30 GeV

WW→IvIv @ Atlas

Background contributions

	ee	μμ	eμ	Tot./fb ⁻¹
N_S	36.7	37.6	284.4	358.7
NB	188.6	112.1	59.4	360.1
SL	2.6	3.4	25.3	16.6
	2.7	3.6	36.9	18.9

(CDF prel. result with 825 pb⁻¹: 95 observed events expected signal: 52.4(4.4), bkg: 37.8(4.8))

WZ→III_V @ Atlas

- Select three isolated electrons or muons with $P_T > 10 \text{ GeV}$
- Z candidates are formed by the combination of the same-flavour opposite-charge pairs
 - the mass is within 10 GeV of the nominal Z mass
- The third high P_T electron or muon with MET > 25 GeV
- No more than one jet with energy greater than 30 GeV in $|\eta|{<}3$
- Vector sum of $E_T < 100$ GeV; Scalar sum of $E_T < 200$ GeV

WZ→III_V @ Atlas

	3e	2e1 µ	1e2µ	3 µ	Tot./fb ⁻¹
Ns	16.9	17.1	21.9	19.8	75.7
NB	1.7	0.9	1.7	2.0	6.3
S _L	7.4	8.6	8.9	8.0	16.4
Background contributions $S_L = \sqrt{2}$				$2\ln Q$, $Q = (1 +$	$\left(\frac{N_{\rm S}}{N_{\rm P}}\right)^{N_{\rm S}+N_B} e^{-N_{\rm S}}$

EPS HEP2007

Chia Ming, Kuo/ NCU, Taiwan

ZZ→IIII @ Atlas

- Two-lepton pairs with at least one lepton $P_T > 25 \text{ GeV}$
- $\Delta R(I^+I^-) = \sqrt{(\Delta \eta^2 + \Delta \Phi^2)} > 0.2$
- |M_{II} M_Z| < 12 GeV

13.4 candidate events are expected at 1 fb⁻¹

Almost background free !

MC samples for studies @ CMS

Data sample	Generator	Nevents	$\int L \mathrm{d}t$, fb ⁻¹
	PYTHIA	21 560 15 467(72%) 5634(26%) 459(2%)	827
$W^{\pm}Z^0/\gamma^* onumber \ W^{\pm}Z^0 onumber \ W^{\pm}\gamma^*$	PYTHIA	91 181 87 078(95.5%) 4103(4.5%)	54.7

• Pile-up is included

• L =
$$2 \times 10^{33}$$
 cm⁻²s⁻¹

Data sample	Generator	Nevents	Pre-selection	$\int L dt$, fb ⁻¹
$Z^0 b \overline{b} (e^+ e^- b \overline{b})$	CompHEP	290 823	$Z^0 \rightarrow e^+e^-, b \rightarrow X,$	4.8
			$60 < M(e^+e^-) < 100 \mathrm{GeV}/c^2$	
$Z^0 b \overline{b} (\mu^+ \mu^- b \overline{b})$	CompHEP	110148	$Z^0 \rightarrow \mu^+ \mu^-, b \rightarrow X,$	1.9
			$60 < M(\mu^+\mu^-) < 100 \text{GeV}/c^2$	1.0
$Z^0/\gamma^*b\overline{b}(4e)$	CompHEP	81 000	$Z^0/\gamma^* \rightarrow e^+e^-$, at least $4e$,	673
			$M(e^+e^-) > 5 \text{GeV}/c^2$	
$t\bar{t}(2\ell)$	TopRex	378 000	$W \rightarrow e/\mu/\tau$	6
$t\bar{t}(4e)$	PYTHIA	79000	$W \rightarrow e/\mu/\tau, \tau \rightarrow e/\mu$, at least $4e$	413
$Z^0/\gamma^*Z^0/\gamma^*(4e)$	PYTHIA	250 000	$Z^0/\gamma^* \rightarrow e^+e^-$	9615
$Z^0/\gamma^*Z^0/\gamma^*(4\mu)$	PYTHIA	8241	$Z^0/\gamma^* \rightarrow \mu^+\mu^-$	317
$Z^0/\gamma^*Z^0/\gamma^*(2e2\mu)$	PYTHIA	10000	$Z^0/\gamma^* \rightarrow 2\ell, \ell = e/\mu$	310

Signal

Background

WZ→IIIv @ CMS

 $W \rightarrow ev Z \rightarrow \mu \mu$

Signal definition

- Restrict to on-shell Z : $|M_{I+I_{-}} M_z| < 20 \text{ GeV}$
- Implicitly force W to be on-shell

σ_{NLO} from MCFM

•
$$\sigma_{NLO}$$
 (pp $\rightarrow W^+Z \rightarrow 3I$, I=e, μ,τ) = 1034 fb

- σ_{NLO} (pp \rightarrow W⁻Z \rightarrow 3I, I=e, μ , τ) = 630 fb
- Select three isolated electrons or muons with $P_T > 10$ GeV and $|\eta| < 2.5$
- Z candidates are formed by the combination of the same-flavor opposite-charge pairs
 - the mass is within 20 GeV of the nominal Z mass
 - veto event if more than one Z candidate
- Find third lepton from W with $P_T > 20 \text{ GeV}$
 - If more than one candidate, select the one with the highest P_{T}
- Jets with $\Delta R(jet, I) < 0.3$ are not considered

WZ→III_∨ @ CMS

	3e	2e1µ	1e2µ	3µ	Total
WZ	14.8	26.9	28.1	27.0	96.8
ZZ	0.63	1.54	1.50	1.51	5.19
tī	0.93	1.55		0.31	2.79
μμb৳			6.54	4.9	11.4
eebb	1.21	1.82			3.03
Tot. background	2.8	4.9	8.0	6.7	22.5
SL	5.3	7.3	6.5	6.6	12.8

High significance at the first fb⁻¹ 5σ discovery (including systematic uncertainties) at \sim 150 pb⁻¹

(D0 prel. result from 760-860 pb⁻¹ : 12 observed events with an estimated 3.61(0.2) background)

ZZ→4e @ CMS

Signal is defined as events with two Z bosons on shell : $70 < M_Z < 110$ GeV ($\sigma_{NLO} = 9.35$ fb)

Level-1 and High Level Trigger					
Sample	Single Ele.	Double Ele.	Single OR Double Ele.		
ZZ	97.3 %	98.4%	99.5%		
Zbb(2ebb)	85.5 %	77.6%	92.1%		
Zbb(4e)	87.7%	81.1%	93.9%		
tī(21)	82.0%	70.3%	89.6%		
tt(4e)	78.2%	68.9%	86.9%		

EPS HEP2007

ZZ→4e @ CMS

- Select four isolated electrons with $P_T > 30, 20, 15, 10 \text{ GeV}$
- Z candidates are formed from electron pairs with opposite charge and 50 < M(e⁺e⁻) < 120 GeV
- Select the "best" combination of the Z candidates
 - the one for which one of the Z candidates has the mass closest to the nominal Z mass
- If there are more than 4 electrons, select only one ZZ combination (based on electron P_T)

EPS HEP2007

ZZ→4e @ CMS

Summary

• WW, WZ, ZZ production are expected to be observed with the early LHC data (100 pb⁻¹ ~ 1 fb⁻¹)

	Atlas (S/B)	CMS (S/B)
WW→eµ	284.4/59.4	
WZ→3I	75.7/6.3	96.8/22.5
ZZ	13.4/0 (4l)	3.6/0.28 (4e)

Expected event yields at the first fb⁻¹ at the LHC

- The probe of triple gauge-boson couplings will be possible with the first few fb⁻¹ data
- In perspective, the study of di-boson production will be extended to include WW, Wγ and Zγ in CMS, and Wγ and Zγ in Atlas

Backup

Systematic Uncertainties (CMS)

WZ

Source	Cross section	Significance
Luminosity	10.0	_
Trigger efficiency	1.0	1.0
Electron identification	2.6	5.2
Muon identification	3.4	6.8
Jet energy scale	5.0	5.0
$Z^0 b \overline{b}$ subtraction	12.0	12.0
$Z^0 Z^0 \rightarrow 4l$ subtraction	4.0	4.0
PDF uncertainty	-	3.5
Total	17.4	20.8

ZZ - cross section

Source	$\int L \mathrm{d}t = 1 \mathrm{fb}^{-1}$	$\int L \mathrm{d}t = 10 \mathrm{fb}^{-1}$
Luminosity	10.0	5.0
Trigger efficiency	1.0	1.0
Background subtraction	0.6	0.6
$Z^0 \gamma^*$ subtraction	1.2	1.2
Electron identification	4×2.0	4×1.5
Total	12.9	7.9

ZZ - significance

Source	$\int L \mathrm{d}t = 1 \mathrm{fb}^{-1}$	$\int L \mathrm{d}t = 10\mathrm{fb}^{-1}$
Trigger efficiency	1.0	1.0
Background subtraction	0.6	0.6
$Z^0 \gamma^*$ subtraction	1.2	1.2
Electron identification	4×2.0	4×1.5
PDF and QCD scale factor	6.4	6.4
Total	18.4	14.9

Atlas Fast Simulation : WZ, WY

				- ()	$W\gamma \rightarrow$	all	Wγ
	Zγ	W+jet	Z+jet	tt(γ)	τνγ	Backgrd	Signal
$P_{\gamma}^T > 100 \text{ GeV}$	1277	2097	2101	945	665	8153	10638
$P_{1\pm}^T > 25 \text{ GeV}$	1196	1938	1800	837	586	7098	10066
$P_{\rm miss}^{T} > 25 {\rm GeV}$	377	1557	215	689	574	3511	7311
$\Delta R(\gamma, l^{\pm}) > 1$	376	1543	183	611	574	3385	6791
$\sum_{\text{jets}} \vec{P_{\text{jet}_i}^T} < 100 \text{ GeV}$	341	1280	133	286	534	2623	4262

	Z+jet	ZZ	tī	All Backgrd	WZ Signal
3 leptons, $P_{1\pm}^T > 25 \text{ GeV}$	398	500	461	1359	3285
$P_{\rm miss}^T > 25 {\rm GeV}$	3.2	90	357	450	2453
$ M_{l^+l^-} - M_Z < 10 \text{ GeV}$	2.8	76	65	144	2331
$\sum_{\text{jets}} \vec{P_{\text{jet}}^T} < 100 \text{ GeV}$	2.5	72	44	119	1987

EPS HEP2007