Measurements of α at BaBar

Mark Allen, SLAC for the BaBar Collaboration July 20, 2007 EPS Manchester, UK

Measurements of α

EPS 2007

 $\rightarrow \pi \pi$

EPS 2007

Isospin Analysis: $B \rightarrow \pi \pi$, $\rho \rho$

$$\Delta \alpha = \alpha - \alpha_{eff}$$

$$A^{+0} \equiv A(B^+ \to \pi^+ \pi^0)$$

$$A^{+-} \equiv A(B^0 \to \pi^+ \pi^-)$$

$$A^{00} \equiv A(B^0 \to \pi^0 \pi^0)$$

$$A^{00} \equiv$$

 $\frac{1}{\sqrt{2}}A^{+-} + A^{00} = A^{+0}$

 $\frac{1}{\sqrt{2}}\bar{A}^{+-} + \bar{A}^{00} = \bar{A}^{-0}$

The key observation: $B^{\pm} \to \pi^{\pm} \pi^{0}$ is a purely tree decay (no $\Delta I = 1/2$ amplitude) So (after a rotation): $\bar{A}(B^{-} \to \pi^{-} \pi^{0}) = A(B^{+} \to \pi^{+} \pi^{0})$

> [M. Gronau and D. London, Phys Rev. Lett. 65, 3381 (1990)]

Eight-fold ambiguity in α .

 $\mathrm{B}^{0} \longrightarrow \pi^{+} \pi^{-}$

PRL: 99, 021603 (2007)

- Events: 1139 ± 49
- $C(B^0 \rightarrow \pi^+\pi^-) = -0.21 \pm 0.09 \pm 0.02$
- $S(B^0 \rightarrow \pi^+ \pi^-) = -0.60 \pm 0.11 \pm 0.03$

Isospin Triangle: $B \rightarrow \pi \pi$

8

- Confidence Levels calculated using toy method.
- $25^{\circ} < \alpha < 66^{\circ}$ excluded at 90% C.L.
- Blue line: Gronau & London method
- Grey shade: L&G after requirement on size of penguin amplitude. [UTFit Collaboration, M. Bona et al, hep-ph/0701204, to appear in PRD]
- $B \rightarrow \pi^+ \pi^- BR$: **PRD 75 (2007) 012008**

×ρρ

EPS 2007

 $\rightarrow \rho \rho$

Much like $B \rightarrow \pi \pi$:

- Two triangle formulation same.
- Advantage:
 - Can do time dependent CP measurement on ρ⁰ ρ⁰ mode. (4-fold ambiguity)
 - SU(3) arguments ($B \rightarrow K^* \rho$)
- Disadvantage:
 - $B^0 \rightarrow \rho^0 \rho^0$ small
 - Longitudinal/Transverse components of differing CP.

BABAR

Events / 2 ps

Events / 2 ps

Asymmetry

Submitted to PRD: arXiv 0705.2157 [hep-ex]

- •ML fit variables:
 - m_{ES}, ΔE , NN, Helicity, ρ mass Δt
- •Largest Systematic Errors:
 - Self cross-feed fraction (76 events)
 - PDF parameterization (+23/-41 events)

- Events: $729 \pm 60^{+94}_{-102}$
- BR($B^0 \rightarrow \rho^+ \rho^-$) = (25.5 ± 2.1^{+3.6}_{-3.9})×10⁻⁶
- $C(B^0 \rightarrow \rho^+ \rho^-) = 0.01 \pm 0.15 \pm 0.06$

•
$$S(B^0 \rightarrow \rho^+ \rho^-) = -0.17 \pm 0.20^{+0.05}_{-0.06}$$

• $f_L = 0.992 \pm 0.024 \, {}^{+0.026}_{-0.013}$

 $B \rightarrow \rho^0 \rho^0$

PRL 98, 111801 (2007)

• Events: $100 \pm 32 \pm 17$

- BR(B⁰ $\rightarrow \rho^+ \rho^-$) = (1.07 ± 0.33 ± 0.19)×10⁻⁶
- $f_L = 0.87 \pm 0.13 \pm 0.04$
- •ML fit variables:
 - m_{ES} , ΔE , NN, Helicity, ρ mass, tagging information
- •Largest Systematic Errors:
 - Interference with $a_1^{\pm} \pi^{\mp}$ (14 events)
 - PDF parameters (10 Events)

3.5σ significance!

×ρπ

EPS 2007

14

 $B^0 \rightarrow (\rho \pi)^{\cup}$

Full Dalitz plot analysis!

Measure 26 separate Dalitz parameters (Bilinear coefficients, U's and I's)

$$f_{Qtag} \propto (1 - A_{\rho\pi}) \times [1 + Q_{tag} (S \pm \Delta S) \sin(\Delta m_d \Delta t) - Q_{tag} (C \pm \Delta C) \cos(\Delta m_d \Delta t)]$$

- $Q_{tag} = 1(-1)$ for $B^0(\overline{B}^0)$ tag
- $A_{\rho\pi}$: Time & flavor integrated charge asymmetry
- S, C: Mixing induced CP parameters (related to α)
- ΔC : asymmetry between: $\Gamma(B^0 \rightarrow \rho^+ \pi^-) + \Gamma(\overline{B}{}^0 \rightarrow \rho^- \pi^+) \&$ $\Gamma(B^0 \rightarrow \rho^- \pi^+) + \Gamma(\overline{B}{}^0 \rightarrow \rho^+ \pi^-)$
- ΔS : related to strong phase differences among amplitudes
- ΔC , ΔS : not sensitive to CP violation

 $B^0 \rightarrow \rho^0 \pi^0$: CP eigenstate EPS 2007

 $B^0 \rightarrow (\rho \pi)^0$

To appear in PRD:hep-ex/0703008

Ч. С

$$\begin{split} N(B^{0} \rightarrow \pi^{+} \pi^{-} \pi^{0}) &= 2067 \pm 86 \\ A_{\rho\pi} \left(\rho^{\pm} \pi^{\mp}\right) &= -0.14 \pm 0.05 \pm 0.02 \\ C \left(\rho^{\pm} \pi^{\mp}\right) &= 0.15 \pm 0.09 \pm 0.05 \\ S \left(\rho^{\pm} \pi^{\mp}\right) &= -0.03 \pm 0.11 \pm 0.04 \\ \Delta C \left(\rho^{\pm} \pi^{\mp}\right) &= 0.39 \pm 0.09 \pm 0.09 \\ \Delta S \left(\rho^{\pm} \pi^{\mp}\right) &= -0.01 \pm 0.14 \pm 0.06 \\ C_{00} \left(\rho^{0} \pi^{0}\right) &= -0.10 \pm 0.40 \pm 0.53 \\ S_{00} \left(\rho^{0} \pi^{0}\right) &= 0.02 \pm 0.22 \pm 0.09 \end{split}$$

Amplitudes expressed as a sum of Isospin related Tree and Penguin

$$\begin{array}{l} A^{+} = A(B^{0} \rightarrow \rho^{+} \pi^{-}) \\ A^{\kappa} = T^{\kappa} e^{-i\alpha} + P^{\kappa}; \kappa = \{+, -, 0\} \\ (q/p)\overline{A}^{\kappa} = T^{\overline{\kappa}} e^{+i\alpha} + P^{\overline{\kappa}} \end{array}$$

 α over-constrained: 9 free parameters, 26 parameters fit. Constraints on α from a least squares minimization 1 87° 0.75 0.5 0.25 0 50 74° 100 132°150 0

 α (deg)

 $B \rightarrow a_1 \pi$, SU(3)

 $B^0 \rightarrow a_1^{\pm} \pi^{\mp} \& SU(3)$

Getting to α

- "Isospin pentagon" not effective.
- Measure α_{eff} , with $B^0 \rightarrow a_1^{\pm} \pi^{\mp}$ and limits on $|\Delta \alpha| = |\alpha_{eff} - \alpha|$ from SU(3) related decays: $B^0 \rightarrow a_1^{\pm} K^{\mp}, B^0 \rightarrow K_{1A}^{\pm} \pi^{\mp}.$
- K_{1A}^+ :SU(3) partner of a_1^+
 - Nearly equal admixture of K₁⁺(1270) & K₁⁺(1400)
- [Gronau & Zupan, PRD **73**, 057502 (2006)]

Similar to $B \rightarrow \rho \pi$:

- Not a CP eigenstate
- Quasi-2 body approach.

•BR: $(B \rightarrow K_1^+(1270) \pi^-) =$ (12.0 ± 3.1^{+9.3}_{-4.5})×10⁻⁶ (< 25.2 ×10⁻⁶ @ 90% C.L.) •BR: $(B \rightarrow K_1^+(1400) \pi^-) =$ (16.7 ± 2.6^{+3.5}_{-5.0})×10⁻⁶ (< 21.8 ×10⁻⁶ @ 90% C.L.)

$$\alpha_{eff} = \frac{1}{4} \left[\arcsin\left(\frac{S_{a_1\pi} + \Delta S_{a_1\pi}}{\sqrt{1 - (C_{a_1\pi} + \Delta C_{a_1\pi})^2}}\right) + \arcsin\left(\frac{S_{a_1\pi} - \Delta S_{a_1\pi}}{\sqrt{1 - (C_{a_1\pi} - \Delta C_{a_1\pi})^2}}\right) \right]$$

 $B^0 \rightarrow a_1^{\pm} \pi^{\mp}$

CP:PRL 98 181803. BR: PRL 97, 051802 (2006).

Use ML fit to ΔE , m_{ES}, Fisher, m_{a1}, Helicity, Δt

 $N(B^{0} \rightarrow a_{1}^{\pm} \pi^{\mp}) = 608 \pm 53$ $A(a_{1}^{\pm} \pi^{\mp}) = -0.07 \pm 0.07 \pm 0.02$ $C(a_{1}^{\pm} \pi^{\mp}) = -0.10 \pm 0.15 \pm 0.09$ $S(a_{1}^{\pm} \pi^{\mp}) = 0.37 \pm 0.21 \pm 0.07$ $\Delta C(a_{1}^{\pm} \pi^{\mp}) = 0.26 \pm 0.15 \pm 0.07$ $\Delta S(a_{1}^{\pm} \pi^{\mp}) = -0.14 \pm 0.21 \pm 0.06$

Largest systematic errors:

- PDF parameterization
- B background CP content
- B \rightarrow a₂ π contribution and interference

 $\alpha_{eff} = 78.6^{\circ} \pm 7.3^{\circ}$

Conclusion

CKMFitter average α **not** using direct measurements $102^{\circ}^{+3^{\circ}}_{-12^{\circ}}$.

CKMFitter average α only using direct measurements $82.5^{\circ} + 18^{\circ}_{-7.3^{\circ}}$.

Thanks to the CKM Fitter group for the plot and numbers.

Mark T. Allen, SLAC

20

Extra Slides

 $B \rightarrow K_1^{\pm} \pi$

•Events: $K_1^+(1270) \pi^-$: 109 ± 29 +85-38 •Events: $K_1^+(1400) \pi^-: 318 \pm 46^{+56}_{-90}$ •BR:(B \rightarrow K₁⁺(1270) π ⁻): (12.0 \pm 3.1 ^{+9.3}-4.5)×10⁻⁶ (< 25.2) •BR:(B \rightarrow K₁⁺(1400) π ⁻): (16.7 ± 2.6 ^{+3.5}-5.0)×10⁻⁶ (< 21.8)

- •K₁(1400) Submodes:
 - •K*0(870) π^+
- •Use ML fit to:
 - • ΔE , m_{ES}, Fisher, m_{K1}, Hel.
- •Main systematic: Interference