Measurements of β in Charmless B Decays at BABAR

Joshua M. Thompson (SLAC) for the BABAR collaboration 20 July 2007 The 2007 Europhysics Conference on High Energy Physics

Outline

Intro to time-dependent CP violation

- Penguin diagrams as a window on New Physics
- sin2β in charmless decays at BaBar
 - $B^0 \rightarrow \rho^0 K_S$
 - $\blacksquare B^0 \rightarrow \pi^0 K_S$
 - $\blacksquare B^0 \xrightarrow{} K_S K_S K_S$
 - $\blacksquare B^0 \rightarrow \pi^0 \pi^0 K_S$
- **D** Measurements of β using Dalitz analysis
 - $\blacksquare B^0 \rightarrow K^+K^-K^0$

Summary

20 July 2007

Motivation: Physics Beyond SM

Charmonium (e.g. B⁰→J/ψK_S) decays dominated by tree diagrams→good laboratory to measure SM values (see M. Bomben talk, this session):

• $\sin 2\beta = 0.678 \pm 0.026 \ (\beta = 0.372 \pm 0.017)$ (HFAG Moriond 07)

□ Charmless b→s decays dominated by loop (penguin) diagrams:

• In the SM, expect $\sin 2\beta_{eff} \approx \sin 2\beta$

BaBar: An Asymmetric B Factory

Time Dep. CP Violation Formalism

Decay rate as a function of Δt :

$$\frac{d\Gamma}{d\Delta t} \propto \frac{e^{-|\Delta t|/\tau}}{\tau} \times \begin{bmatrix} |A|^2 + |\overline{A}|^2 \pm 2 \operatorname{Im}\left(\eta_{CP} \overline{A} A^* e^{-2i\beta}\right) \sin \Delta m \Delta t \\ \mp \left(|A|^2 - |\overline{A}|^2\right) \cos \Delta m \Delta t \end{bmatrix}$$

This is usually simplified to

$$\frac{d\Gamma}{d\Delta t} \propto \frac{e^{-|\Delta t|/\tau}}{\tau} \times \left[1 \pm \left(-\eta S \sin \Delta m \Delta t - C \cos \Delta m \Delta t\right)\right]$$

CP violation parameters:

- in interference between decay w/ and w/o mixing : S (~sin2 β in SM)
- □ in decay (direct): C (~0 in SM)

20 July 2007

PRL 98, 051803 (2007)

BABAR

2

6

 $\Delta t (ps)$

 $B^0 \rightarrow \pi^0 K_S$

- □ ∆t computed using technique pioneered by BaBar
 - K_s momentum vector pointed back to the IP
 - B production vertex is constrained to come from the beam axis

□
$$N_{sig} = 459 \pm 29$$

- B(B⁰ $\rightarrow \pi^0 K^0$)=(10.34±0.66 ±0.58)10⁻⁶
- **S** = $0.40 \pm 0.23 \pm 0.03$
- **C** = $0.24 \pm 0.15 \pm 0.03$

K⁺K⁻K⁰: Time-Dependent Dalitz Analysis

□ Challenges in $B^0 \rightarrow K^+K^-K^0$:

- Mixture of CP-odd and CP-even
- Potential for interference among different decay amplitudes
- Answer: Incorporate amplitude structure as a function of phase space into the fit

Plug into top expression on pg. 5:

K+K-K⁰: Analysis Strategy

Amplitude model in K⁺K⁻K⁰

□ Motivated by DP analysis of $B^+ \rightarrow K^+ K^- K^+$

BaBar: PRD 74 032003 (2006); Belle: PRD 71 092003 (2005)

Also BaBar angular moments analysis

PRD 71 091102 (2005)

		Res	ults: Fit to Wl	nole DP	Fit fraction
Components of our Isobar Model	Isobar M ϕK^{0} $f_{0}K^{0}$ $X_{0}(1550)$ $(K^{+}K^{-})$ $(K^{+}K^{0})$ $(K^{-}K^{0})$	Mode $)K^0$ $)_{NR}K^0$ $)_{NR}K^-$ $)_{NR}K^+$	Amplitude c_r 0.0085 ± 0.0010 0.622 ± 0.046 0.114 ± 0.018 1 (fixed) 0.33 ± 0.07 0.31 ± 0.08	Phase φ_r (rad) -0.016 ± 0.234 -0.14 ± 0.14 -0.47 ± 0.20 0 (fixed) 1.95 ± 0.27 -1.34 ± 0.37	$ \begin{array}{c} \mathcal{F}_r \ (\%) \\ 12.5 \pm 1.3 \\ 40.2 \pm 9.6 \\ 4.1 \pm 1.3 \\ 112.0 \pm 14.9 \end{array} $
	$\chi_{c0}(1P)$ D^-K^+ $D_s^-K^+$	$\overline{K^0}$	$\begin{array}{c} 0.0306 \pm 0.0049 \\ 1.11 \pm 0.17 \\ 0.76 \pm 0.14 \end{array}$	$^{0.81}_{-2.33} \pm 0.54$	$3.0 \pm 1.2 \\ 3.6 \pm 1.5 \\ 1.8 \pm 0.6$

20 July 2007

K⁺K⁻K⁰: CP Results – Whole DP

K⁺K⁻K⁰: CP Results – High Mass

- High-mass result intended to replace "K+K-K⁰ excluding ϕ'' result
- Using likelihood difference, $\beta_{eff}=0$ excluded at 5.1 σ
 - First observation of CP violation in $B^0 \rightarrow K^+K^-K^0$!
 - Second observation in penguin decays after $B^0 \rightarrow \eta' K^0$; BaBar: PRL 98 031801 (2007), Belle: PRL 98 031802 (2007)

20 July 2007

K+K-K⁰: CP Results – Low Mass

- Fit finds 2 solutions $w/\Delta \log L = 0.1$
- We choose sol'n compatible with the Standard Model

K+K-K⁰ Summary

- Results on 383x10⁶
 BB pairs, submitted to PRL (arXiv:0706.3885)
- Exclude π/2-β sol'n at 4.5σ (*)
- Observe CP violation in high-mass K⁺K⁻K⁰
- \Box ϕ , $f_0 > 1.5\sigma$ from SM

J. M. Thompson - EPS 2007

Summary

- Moriond 2007: HFAG average = 0.53 ± 0.05
 - 2.6 σ from b \rightarrow ccs
- \square w/new $\pi^0 K_s, K^+ K^- K^0$: HFAG average = 0.56 ± 0.05
 - 2.1 σ from b \rightarrow ccs
- * = BaBar resultsrecently submitted or published

 $sin(2\beta^{eff}) \equiv sin(2\phi_1^{eff})$

20 July 2007

J. M. Thompson - EPS 2007

Extra Slides

$B^0 \rightarrow \rho^0 K_S$: Likelihood Variables

$B^0 \rightarrow \pi^0 K_S$: Likelihood Variables

<u>Weighted events</u> Main: Signal Insets: Background

$B^0 \rightarrow K_S K_S K_S$: Kinematic Variables

J. M. Thompson - EPS 2007

$B^0 \rightarrow \pi^0 \pi^0 K_S$: Likelihood Variables

21

K⁺K⁻K⁰: DP Fit Projections

K⁺K⁻K⁰: Low-mass fit solutions

	A_{CP}	$\beta_{e\!f\!f}(\mathrm{rad})$
(1) ϕK^0	$-0.08 \pm 0.18 \pm 0.04$	$0.11 \pm 0.14 \pm 0.06$
(1) $f_0 K^0$	$0.41 \pm 0.23 \pm 0.07$	$0.14 \pm 0.15 \pm 0.05$
(2) ϕK^0	-0.11 ± 0.18	0.10 ± 0.13
(2) $f_0 K^0$	-0.20 ± 0.31	3.09 ± 0.19

2 solutions w/ Δ log L = 0.1 – Multiple sol'ns common in DP analyses

- $\bullet~\phi$ isobar coefficients significantly different
- Solution (2) is completely inconsistent w/the SM due to β_{eff} in f_0K^0
 - Wrong quadrant of $\rho\text{-}\eta$ plane!
 - We choose (1), as it is consistent w/SM
- For both sol'ns, there is a mathematical ambiguity of $\pm\pi$ in $\beta_{eff,\phi'}$ correlated with a $\pm\pi$ shift in ϕ_{ϕ}

20 July 2007

K+K-K⁰: Systematic Errors

Source	Whole DP		High-mass		ϕK^0		$f_0 K^0$	
	A_{CP}	β_{eff}	A_{CP}	$\beta_{e\!f\!f}$	A_{CP}	β_{eff}	A_{CP}	$\beta_{e\!f\!f}$
Fit Bias	0.003	0.001	0.014	0.008	0.03	0.06	0.06	0.03
Isobar model	0.004	0.009	0.025	+0.051 -0.024	0.00	0.01	0.01	0.03
Other	0.052	0.024	0.053	0.018	0.02	0.01	0.03	0.02
Total	0.053	0.026	0.060	+0.055 -0.031	0.04	0.06	0.07	0.05

- Fit Bias: negligible in pure toy MC
 - Use values from fits to signal MC + toy background
 - Low-mass bias due to (unmodeled) resolution in KL
- Isobar model: vary model parameters by errors; replace BaBar's $X_0(1550)$ w/Belle's $f_{\chi}(1500)$
 - Motivation for low-mass fit: keep uncertainty in scalar sector from introducing a large systematic
- Other: Standard uncertainties in time-dependent analysis; largest contribution: conservative allowance for CP in background

K⁺K⁻K⁰: Q2B Parameters

Results of DP fit translated to C and S using:

$$C \equiv -A_{CP}$$
, and

$$-\eta S \equiv \frac{1-b^2}{1+b^2} \sin(2\beta_{e\!f\!f}),$$

	C	$-\eta S$
Whole DP	$0.015 \pm 0.077 \pm 0.053$	$0.647 \pm 0.116 \pm 0.040$
High-mass	$0.054 \pm 0.102 \pm 0.060$	$0.764 \pm 0.111 {}^{+0.071}_{-0.040}$
(1) ϕK^{0}	$0.08 \pm 0.18 \pm 0.04$	$0.21 \pm 0.26 \pm 0.11$
(1) $f_0 K^0$	$-0.41 \pm 0.23 \pm 0.07$	$0.25 \pm 0.26 \pm 0.10$

$B^0 \rightarrow \rho^0 K_S$: Systematic Errors

	S	С	N
Mis-reco'd events and fit bias	0.12	0.09	10
PDF uncertainties	0.13	0.18	2
Tagging parameters	0.02	0.01	-
Neglect of intereference	0.14	0.09	7
ρ^0 mass shape	0.07	0.05	3
B Background BF	0.02	0.10	13
CP of background	0.04	0.00	-
Tracking efficiency & B counting	-	-	6
Total	0.24	0.20	19

TABLE II: Summary of contributions to the systematic error.