B physics at CMS

T. Speer University of Zurich

B-physics at the LHC

- LHC: proton-proton collisions at $\sqrt{s} = 14 \text{ TeV}$
- High *bb* production cross section: $\sigma_{\rm bb}$ ~500 µb
- High luminosity:
 - > low-luminosity: up to $2 \cdot 10^{33}$ cm⁻² s⁻¹ (~10 fb⁻¹ per year)
 - high-luminosity: 10³⁴ cm⁻² s⁻¹ (~100 fb⁻¹ per year)
- CMS: multi-purpose experiments, with emphasis in high- p_{τ} physics
 - Special interest in the initial low-luminosity period
 - > Many B decays channels yield J/ψ and μ that are useful for understanding the detectors calibration, alignment, *B*-field, etc.
- *B*-physics performance is strongly dependent by trigger menu
 - > Only limited trigger bandwidth is available for *B*-physics
- Most of the *B*-physics program based on dimuon Level-1 trigger, with some use of single muons trigger.
- Most *B*-physics measurements to be done at low-luminosity
 - Search for rare decays may also be continued at high-luminosity
- CMS *B*-physics capabilities studied in benchmark channels:

> $B_s \rightarrow J/\psi \varphi$, $B_s^0 \rightarrow \mu^+ \mu^-$, $B_{C'}$ (*b*-production)

The CMS experiment

Trigger and DAQ

- Two level trigger architecture:
 - ≻ Level 1 trigger based on muon & calorimeters (40 MHz → ~100 kHz)
 - ≻ High Level trigger (HLT) using similar reconstruction algorithms as offline (100 kHz → ~150 Hz)

Triggers for *B* physics:

- Level 1: Single-muon or dimuon trigger:
 - Single muon: p_{τ} > 14 GeV/c
 - \Rightarrow Dimuon: $p_{\tau} > 3 \text{ GeV/}c$
- > HLT:

𝔅 Inclusive *b*, *c* trigger through *b*-tagging: ~ 5 Hz (L1: high *E*_τ jet)

Exclusive B decays – under study : consider partial reconstruction of decay products in the tracker in Region of Interest around the muons Special interest in the initial low-luminosity period.

Partial reconstruction

- *Partial reconstruction*: stop track reconstruction once enough information is available to answer a specific question
- Track parameter resolutions reach asymptotic value after using only first 5/6 hits

Resolutions as a function of the number of hits used: (*b*-jets, 2.5< p_{τ} <5, $|\eta|$ <0.9)

The decay $B_s \rightarrow J/\psi \varphi$

- Study of the decay: $B_s \rightarrow J/\psi \varphi$, $J/\psi \rightarrow \mu^+\mu^-$, $\varphi \rightarrow K^+K^-$
 - ➢ Fully reconstructed decay: Branching fraction= (5.4 ± 1.9) · 10⁻⁵
 - Selection and reconstruction
 - Untagged analysis: unbinned maximum likelihood fit (flavour tagging tools not yet available)
- Measurements:
 - > Without tagging:
 - Symbol Width difference $\Delta \Gamma_s / \Gamma_s SM$: $\Delta \Gamma_s / \Gamma_s \sim 10\%$
 - \mathbf{V} (Weak phase φ)
 - With tagging:
 - \square Mass difference: Δm_s
 - Weak phase SM: $\varphi = -2\lambda^2 \eta \sim 0.04$
- First measurements from CDF & D0:

• CDF:
$$\Delta \Gamma_{\rm s} / \Gamma_{\rm s} = (65^{+25}_{-33} \pm 1)\%$$

- $ΦD0: \Delta \Gamma_{s} = 0.13 \pm 0.09 \text{ ps}^{-1}$
- **♦ D0:** φ = −0.70 ^{+0.47} _{-0.39}

The decay $B_s \rightarrow J/\psi \varphi$

- B_s signal: Fully reconstructed decay: $B_s \rightarrow J/\psi \varphi$, $J/\psi \rightarrow \mu^+\mu^-$, $\varphi \rightarrow K^+K^-$
- Backgrounds:
 - > Prompt $J/\psi \rightarrow \mu\mu$: Important background in trigger
 - > Inclusive $b \rightarrow J/\psi X$
 - > Misidentified $B_d^{\ o} \rightarrow J/\psi K^{*o} \rightarrow \mu^+ \mu^- K^+ \pi^-$ decays: similar angular distribution, distorted due to misidentified pion, kinematic requirements

Data sample	$B_s^0 ightarrow J/\psi \phi$	Direct J/ψ	$b ightarrow J/\psi X$	(filt)	$B^0 o J/\psi K^{*0}$
Cross section	$42.87 \pm 1.07~\mathrm{nb}$	141 μb	$682\pm 64~\mathrm{nb}$	$682\pm 64~\mathrm{nb}$	$20.4 \pm 1.7 nb$
w. kine.sel.	$74\pm27~{ m pb}$	$176\pm2~\mathrm{nb}$	$27.9\pm2.4~\mathrm{nb}$	$3.20\pm0.3~\mathrm{nb}$	$366\pm22~\rm{pb}$

- > In all samples : $p_{\tau}(\mu) > 3 \text{ GeV/c} (|\eta| < 1.2), p_{\tau}(\mu) > 2 \text{ GeV/c}$
- > In signal + B_d bkg : $p_{\tau}(\pi/K) > 0.8$ GeV/c
- Low luminosity PU (2x10³³ cm⁻²s⁻¹) included in all samples
- Large uncertainties in *bb*, prompt J/ψ cross-section, p_{τ} distribution, fragmentation

The decay $B_s \rightarrow J/\psi \varphi$: High-Level Trigger selection

Level 2: J/ψ search – Prototype for inclusive $B \rightarrow J/\psi$ selection

- Primary Vertex Reconstruction using only the pixel detector
- Regional, partial track reconstruction in cones around L1 muon candidates
 - Partial reconstruction up to 5 hits maximum
 - > $p_{\tau}^{\ \mu} > 2.5 \text{ GeV/}c (|\eta| < 1.2)$, $p_{\tau}^{\ \mu} > 2 \text{ GeV/}c$
 - $p_T^{J/\psi} > 4 \text{ GeV/}c$
- Track pairs with opposite charge: $|M(\mu\mu) M(J/\psi)| < 150 \text{ MeV}/c^2$
- Vertex Fit of track pairs:
 - ≻ χ²<20</p>
 - Transverse decay length significance > 3
 - Cosine of angle (momentum/decay length) > 0.9
- Accept rate reduced to ~ 15 Hz
- 80% of J/ψ from *B* decays
- Main challenge: Timing due to track reconstruction

The decay $B_s \rightarrow J/\psi \varphi$: HLT selection

The decay $B_s \rightarrow J/\psi \varphi$: HLT selection

Level 3: Further reduction through full reconstruction – φ search

> Regional, partial track reconstruction in cones around J/ψ candidates

Data sample	$B_s^0 ightarrow J/\psi \phi$	Direct J/ψ	$b ightarrow J/\psi X$	$B^0 ightarrow J/\psi K^{*0}$
Cross section (nb)	0.074	176	28.7	0.266
L3 e	20.50(6)%	0.0007(7)%	0.15(1)%	0.961(26)%
L3 R (Hz)	0.03034(8)	0.002(2)	0.083(6)	0.0077(2)

Thomas Speer

The decay $B_s \rightarrow J/\psi \varphi$: Offline selection

- Muon reconstruction:
 - Full reconstruction using tracker and muon chambers or MuonID on Tracker-only tracks
 - > $p_{\tau}^{\mu} > 3 \text{ GeV/c} (|\eta| < 1.2)$, $p_{\tau}^{\mu} > 2 \text{ GeV/c}$
- Track reconstruction: Combinatorial TF, with $p_{T} > 0.8$ GeV/c
- Kinematic Fit (vertex and J/ψ mass constraint)
 - > $Prob(\chi^2) > 1.10^{-3}$ (6 dof)
 - Cosine of angle (momentum/decay length 2D) > 0.98
 - ≻ $|M(KK) M(\varphi)| < 8 \text{ MeV/c}^2$
 - > $p_T^{\varphi} > 1.0 \text{ GeV/c}, p_T^{Bs} > 5.0 \text{ GeV/c}$
- Number of events per 10 fb⁻¹:

	$B^0_s o J/\psi \phi$	$b \rightarrow J/\psi$ incl.	$\hat{B_d} \to J/\psi K^*$
$\sigma \cdot Br$ (nb)	0.074	28.7	0.322
ε (%)	14.7	.113	0.202
Events per 10 fb^{-1}	109'000	32'400	6'500

• Without *B_s* mass cut! (sidebands to be used in analysis)

The decay $B_s \rightarrow J/\psi \varphi$: Offline selection

- Measurement of $\Delta \Gamma_{s} / \Gamma_{s}$ on untagged sample
- Final state: admixture of CP-even / CP-odd eigenstates
- The CP-even/CP-odd components have different angular dependences
- Unbinned maximum likelihood fit on observed time evolution of the angular distribution (3 angles + proper decay length):

 $P = \varepsilon(t, \Theta) \cdot \mathbf{f}(\Theta, \alpha, t)$

- Distortion due to acceptance, selection: $\varepsilon(t, \Theta) = \varepsilon(t) \cdot \varepsilon(\Theta)$
 - > $\epsilon(\Theta)$: Distortion of the angular distributions due to kinematic requirements
 - > $\epsilon(t)$: Time-dependent efficiency due to HLT requirements
- Resolution on proper decay length:
 - *pdf* convolved with Gaussian resolution function
 - > Resolution on angles negligible

- Dataset of 1.3 fb⁻¹ with expected B_s/B_d signal-to-background ratio
 - Low number of background events, to to few include background distribution in *pdf*
 - > Invariant mass requirement: $|M(\mu\mu KK) M(B_s)| < 36 \text{ MeV}/c^2$
 - $\leq \epsilon(B_d) = 41\%$
 - $\leq \epsilon(B_s) = 97.1\%$
- Fit Result on selected signal and background events:

Parameter	Input value	Result	Stat. error	Sys. error	Total error	Rel. error
$ A_0(0) ^2$	0.57	0.5823	0.0061	0.0152	0.0163	2.8%
$ A_{ }(0) ^2$	0.217	0.2130	0.0077	0.0063	0.0099	4.6%
$ A_{\perp}^{''}(0) ^2$	0.213	0.2047	0.0065	0.0099	0.0118	5.8%
$\bar{\Gamma}_s$	$0.712 \ {\rm ps}^{-1}$	$0.7060 \ {\rm ps}^{-1}$	$0.0080 \ {\rm ps}^{-1}$	$0.0227 \ {\rm ps}^{-1}$	$0.0240 \ {\rm ps}^{-1}$	3.4%
$\Delta\Gamma_s$	0.142 ps^{-1}	$0.1437 \ \mathrm{ps}^{-1}$	$0.0255 \ {\rm ps}^{-1}$	$0.0113 \ {\rm ps}^{-1}$	$0.0279 \ \mathrm{ps^{-1}}$	19%
$\Delta \Gamma_s / \Gamma_s$	0.2	0.2036	0.0374	0.0173	0.0412	20%

• For 10 fb⁻¹, expect to measure $\Delta\Gamma/\Gamma$ with stat.error of 0.011

FCNC Decays $B^{o} \rightarrow \mu^{+}\mu^{-}$

• FCNC forbidden at first order → higher orders

Helicity suppression: width proportional to m_{l}^{2}

• B_d^{0} : suppression $(|V_{td}| / |V_{ts}|)^2$

Decay	SM prediction	Upper Limit	Exp.
$B_d^{\ o} \rightarrow e^+e^-$	2.4 · 10 ⁻¹⁵	6.1 · 10 ⁻⁸	Babar
$B_{s}^{o} \rightarrow e^{+}e^{-}$	8.0 · 10 ⁻¹⁴	5.4 · 10⁻⁵	CDF
$B_d^{\ o} \rightarrow \mu^+ \mu^-$	1.0 · 10 ⁻¹⁰	3.0 · 10 ⁻⁸	CDF
$B_{s}^{o} \rightarrow \mu^{+}\mu^{-}$	3.5 · 10⁻ ⁹	7.5 · 10⁻ ⁸	D0
$B_d^{\ 0} \rightarrow \tau^* \tau^-$	3.1 · 10 ⁻⁸	3.2 · 10⁻³	Babar
$B_{s}^{o} \rightarrow \tau^{+} \tau^{-}$	7.4 · 10⁻ ⁷	5.0%	Aleph

 Contributions from non-Standard Model processes can be important

FCNC Decays $B^0 \rightarrow \mu^+ \mu^-$: Backgrouds

Sample	Decay channel/Generator cuts	N _{Gen}	$\sigma_{vis}[{ m fb}]$	N_{exp} in 10 fb ⁻¹
$B_s \rightarrow \mu^+ \mu^-$	$p_{\perp}^{\mu} > 3 \text{GeV}, \eta^{\mu} < 2.4$	8000	3.90E + 01	390
$b\bar{b} \rightarrow \mu^+\mu^- + X$	$p_{\perp}{}^{\mu\mu} > 5 \text{ GeV}, p_{\perp}{}^{\mu} > 3 \text{ GeV}$	14472	1.74E + 07	1.67×10^8
	$ \eta^{\mu} < 2.4, 5 < m_{\mu\mu} < 6 \text{GeV}$		A STOCKET COLOR	1010121-1224-0
25.200	$0.3 < \Delta R(\mu\mu) < 1.8$			
QCD hadrons	$5 < m_{hh} < 6 \text{GeV}$	4875	2.24E + 11	1.12×10^{8}
B_s decays	$B_s \to K^- K^+$	1000	2.74E + 05	274
173	$B_s \to \pi^- \pi^+$	1000	9.45E + 03	3
	$B_s \to K^- \pi^+$	1000	3.08E + 04	16
	$B_s \to K^- \mu^+ \nu$	1000	2.80E + 05	2.80×10^4
	$B_s \to \mu^+ \mu^- \gamma$	1000	1.29E + 01	130
	$B_s \to \mu^+ \mu^- \pi^0$	1000	3.77E + 01	377
B_d decays	$B_d \to \pi^- \pi^+$	1000	8.34E + 04	21
	$B_d \to \pi^- K^+$	1000	3.74E + 05	187
	$B_d \to \pi^- \mu^+ \nu$	1000	1.25E + 06	6.25×10^{4}
B^+ decays	$B_u \to \mu^+ \mu^- \mu^+ \nu$	1000	2.24E + 03	2.24×10^4
B_c decays	$B_c \to \mu^+ \mu^- \mu^+ \nu$	1000	2.01E + 01	201
	$B_c \rightarrow J/\Psi \mu^+ \nu$	1000	1.89E + 03	$1.89 imes 10^4$
Λ_b decays	$\Lambda_b \to p\pi^-$	1000	4.22E + 03	1
Simular (T)	$\Lambda_b \to p K^-$	1000	8.45E + 03	1

- Muons from independent semi-leptonic B decays (mostly gluon splitting)
- Non-resonant QCD background (hadron misidentification)
- Hadronic B decays (hadron misidentification)
- Rare B decays
- Hadron misidentification: $\varepsilon_{mis}(\pi) = 0.5\% \varepsilon_{mis}(K) = 1.0\% \varepsilon_{mis}(p) = 0.1\%$

Thomas Speer

20th July 2007 - p. 16

Search for the decay $B_s \rightarrow \mu^+ \mu^-$: HLT selection

Similar HLT selection as for $B_s \rightarrow J/\psi \varphi$ search:

- Primary Vertex Reconstruction (Pixel only)
- Regional, partial track reconstruction in cones around L1 muon candidates
 - Partial reconstruction up to 6 hits maximum

> $p_T^{\mu} > 4 \text{ GeV/}c$

- Track pairs with opposite charge: $|M(\mu\mu) - M(B_s)| < 150 \text{ MeV}/c^2$
- Vertex Fit of track pairs (χ^2 <20)

> Transverse decay length > 150 μ m

- Efficiency: 41 % (w.r.t to decays with $p_{\tau}(\mu) > 3 \text{ GeV/c}, |\eta| < 2.4$)
 - ➤ Level 1 efficiency: 69 %
 - ➢ HLT efficiency: 60 %
- Events / 10fb⁻¹: 150
- HLT accept rate: < 1.7 Hz

Search for the decay $B_s \rightarrow \mu^+ \mu^-$: Offline selection

- Track reconstruction: Combinatorial KF, with $p_{T} > 0.9$ GeV/c
- Muon pairs with opposite charge
- Muon separation in $\eta\phi$: 0.3 < $\Delta R(\mu\mu)$ < 1.2

$$\Delta R(\mu \mu) = \sqrt{(\eta_{\mu 1} - \eta_{\mu 2})^2 + (\phi_{\mu 1} - \phi_{\mu 2})^2}$$

Tracker Isolation of muon pair: I > 0.85
 > Tracks in cone of ΔR < 1 around reconstructed

dimuon momentum

$$I = \frac{p_T(B_s)}{p_T(B_s) + \sum_{tracks} p_T}$$

- Vertex Fit of dimuon pairs ($\chi^2 < 1$)
 - > Transverse decay length significance : $L_{xy}/\sigma(L_{xy}) > 18$
 - Cosine of angle (momentum/decay length) > 0.995
- Mass window: $|M(\mu\mu) M(B_s)| < 100 \text{ MeV/c}^2$

Rare background after cuts (10 fb⁻¹)

Search for the decay $B_s \rightarrow \mu^+ \mu^-$: Result

- Mass window: $|M(\mu\mu) M(B_s)| < 100 \text{ MeV/c}^2$
- Study limited by sizes of MC samples!
 - No background events remain when applying all cuts!
 - > Factorize isolation and χ^2 cuts
- Selection efficiency: (w. factorization)
 - > Signal: $\epsilon_s = 0.019 \pm 0.002$
 - > Background: $\varepsilon_{b} = 2.6 \times 10^{-7}$
- Events after all offline requirements (10 fb⁻¹)
 - > Signal: $n_s = 6.1 \pm 0.6(stat) \pm 1.5(syst)$
 - > Background: $n_B = (13.8 + 0.3)^{+22.3}_{-14.1}$
- Upper limit (90% CL, including statistical and systematic error):

 $Br(B_{s} \rightarrow \mu^{+}\mu^{-}) \leq 1.4 \cdot 10^{-8} \qquad Br(B_{s} \rightarrow \mu^{-}\mu^{+}) \leq \frac{N(n_{obs}, nb, ns)}{L \cdot \sigma_{Bs} \cdot \epsilon_{gen} \cdot \epsilon_{sel}}$

Expected SM Branching fraction: $Br(B_s \rightarrow \mu^+ \mu^-) = 3.5 \cdot 10^{-9}$

Study of the B_c

Study of the B_c in decay $B_c \rightarrow J/\psi \pi$

~120 candidates in first fb⁻¹ of data

Conclusion

- CMS well suited for *B* physics
 - Large b production cross section
 - High luminosity (even at the initial "low luminosity"!)
- Powerful Muon system, used also for Level-1 Trigger
- Robust and versatile tracker and track reconstruction algorithms
 - Good performance at HLT
- Most *B*-physics measurements to be done at low-luminosity
 - Search for rare decays may also be continued at high-luminosity
- Trigger strategies and trigger-menus are being prepared to be ready for first collisions and first measurements!
- First *B*-physics measurements with early data!
 - > New Physics ?
 - Constraints on models beyond SM
 - ≻ Can expect high yield of rare decays (B_s → μ⁺μ⁻, B_s → μ⁺μ⁻φ, B → μ⁺μ⁻K, B → μ⁺μ⁻K^{*}, B_s → μ⁺μ⁻γ)

Backup

The Pixel system

Active area ~ $1m^2 - 66 \cdot 10^6$ pixels Geometry:

- 3 Barrel layers
 r = 4.4 cm, 7.3 cm, 10.2 cm
- 2 Pairs of Forward/Backward Disks
 r = 6 cm-15 cm ; z = 34.5cm, 46.5cm

Pixel-size: 100 μm x 150 μm **Hit-resolution**:

(Lorentz angle 23° in 4 T field)

- *r-z* : σ ~ 20 μm
- → 3 high resolution measurement points for $|\eta| < 2.2$

The Silicon Strip Tracker

The Muon detectors

Position measurement:

Drift Tubes (DT) in barrel Cathode Strip Chambers (CSC) in endcaps

Resistive Plate Chambers (RPCs) in barrel and endcaps

First muon chamber just after solenoid \rightarrow extend lever arm for p_{τ} measurement

The Level 1 trigger

3D-EVB: scalable DAQ

Thomas Speer

- Final state: admixture of CP-even / CP-odd eigenstates
- The CP-even and CP-odd components have different angular dependences!
 - > A.Dighe *et al.*, Phys. Lett B 369 (1996) 144-150
 - > A.Dighe et al., Eur. Phys. J. C 6, 647-662 (1999)
- Differential decay rate:

$$\frac{d^4 \Gamma(B_s(t))}{d^3 \Theta dt} = f(\Theta, \alpha, t) = \sum_i b^{(i)}(\alpha, t) g^{(i)}(\Theta)$$

> $g^{(i)}(\Theta)$: angular distribution functions

 Θ : angles describing the kinematics (3 angles: Transversity basis)

- > $b^{(i)}(\alpha, t)$: observables
 - Δ kinematics independent parameters (e.g. Γ_H, Γ_L, Δm_s ...)
 - can be expressed in terms of bilinear combinations of the linear polarization amplitudes:

 $|A_{o}(t)|^{2}, |A_{//}(t)|^{2}, |A_{\perp}(t)|^{2},$ Re $[A_{o}^{*}(t)A_{//}(t)], \text{Im}[A_{//}^{*}(t)A_{\perp}(t)], \text{Im}[A_{o}^{*}(t)A_{\perp}(t)]$

Observables for an untagged analysis:

$$\begin{split} |A_{0}(t)|^{2} &= |A_{0}(0)|^{2} \left[e^{-\Gamma_{L}t} + e^{-\Gamma_{H}t} - |\cos\phi_{CKM}| \left(e^{-\Gamma_{H}t} - e^{-\Gamma_{L}t} \right) \right] \\ |A_{\parallel}(t)|^{2} &= |A_{\parallel}(0)|^{2} \left[e^{-\Gamma_{L}t} + e^{-\Gamma_{H}t} - |\cos\phi_{CKM}| \left(e^{-\Gamma_{H}t} - e^{-\Gamma_{L}t} \right) \right] \\ |A_{\perp}(t)|^{2} &= |A_{\perp}(0)|^{2} \left[e^{-\Gamma_{L}t} + e^{-\Gamma_{H}t} + |\cos\phi_{CKM}| \left(e^{-\Gamma_{H}t} - e^{-\Gamma_{L}t} \right) \right] \\ \Im(A_{\parallel}^{*}(t)A_{\perp}(t)) &= -|A_{\parallel}(0)||A_{\perp}(0)|\cos(\delta_{1})\sin\phi_{CKM}(e^{-\Gamma_{H}t} - e^{-\Gamma_{L}t}) \\ \Re(A_{0}^{*}(t)A_{\parallel}(t)) &= |A_{0}(0)||A_{\parallel}(0)|\cos(\delta_{2} - \delta_{1}) \left[e^{-\Gamma_{L}t} + e^{-\Gamma_{H}t} - |\cos\phi_{CKM}| \left(e^{-\Gamma_{H}t} - e^{-\Gamma_{L}t} \right) \right] \\ \Im(A_{0}^{*}(t)A_{\perp}(t)) &= -|A_{0}(0)||A_{\perp}(0)|\cos(\delta_{2})\sin\phi_{CKM}(e^{-\Gamma_{H}t} - e^{-\Gamma_{L}t}) \\ \end{split}$$

- > Decay widths ($\Gamma_{\rm H}, \Gamma_{\rm L}$)
- > CP-conserving strong phases δ_1 , δ_2 (from FSI)
- > CP-violating weak phase $\delta \phi$: interference between mixing and decay:

$$e^{i\,\delta\,\phi} = \frac{V_{tb}V_{ts}^{*}}{V_{ts}V_{tb}^{*}} \frac{V_{cb}V_{cs}^{*}}{V_{cs}V_{cb}^{*}} , \quad \delta\,\phi \simeq 2\,\lambda^{2}\eta \sim O(0.03)$$

> In tagged analysis, dependence on mass difference ($\Delta m = m_H - m_L > 0$)

"Transversity basis": 3 angles: $\cos \theta$, ψ , $\cos \phi$

- Right handed coordinate system in the J/ψ rest frame:
 - > **x**: direction of flight of the ϕ meson
 - > **y**: \perp to **x**, in the direction of flight of the K^+
- (θ, ϕ) : direction of flight of I^+ in the J/ψ rest frame
- ψ : angle between x and direction of flight of the K⁺ in the φ rest frame
- Angular distribution functions:

$$\begin{array}{rcl} g_1 &=& 2\cos^2\psi(1-\sin^2\theta\cos^2\varphi) \;, \\ g_2 &=& \sin^2\psi(1-\sin^2\theta\sin^2\varphi) \;, \\ g_3 &=& \sin^2\psi\sin^2\theta \;, \\ g_4 &=& \sin^2\psi\sin^2\theta\sin^2\theta \;, \\ g_5 &=& 1/\sqrt{2}\sin2\psi\sin^2\theta\sin2\varphi \;, \\ g_6 &=& 1/\sqrt{2}\sin2\psi\sin2\theta\cos\varphi \;. \end{array}$$

20th July 2007 - p. 31

Distributions of the proper decay length of the selected events with fit projection:

Time-dependent efficiency

• Measurement/cross-check for other *B* decays ($B_d^0 \rightarrow J/\psi K^*$) from data

$$\epsilon(t) = \begin{cases} c \cdot \left(1 + \tanh\left(\frac{t - t_0}{\Delta t}\right)\right) & t < t_0 \\ (a \cdot t^2 + b \cdot t + c) \cdot \left(1 + \tanh\left(\frac{t - t_0}{\Delta t}\right)\right) & t > t_0 \end{cases}$$

Distortion of the angular distributions due to kinematic requirements:

- Expansion of products of spherical harmonics
- Angular efficiency (projections)

- Method can be tested on similar $B_d^{\ o} \rightarrow J/\psi K^*$ decays (data vs. MC)
 - Efficiency function/moments will be different due to different kinematics

- Observed angular distribution of misidentified $B_d^{\ o} \rightarrow J/\psi K^*$ decays:
 - Similar angular distribution, distorted due to misidentified pion, kinematic requirements
 - Expansion of products of spherical harmonics (up to L = R = 8)

To few events in current data set to estimate the moments

Time-dependence: single exponential decay with time-dependent efficiency

- Other backgrounds (inclusive, combinatorial)
 - Flat angular distribution
 - > Time-dependence: two exponential decays with time-dependent efficiency:
 - Short-lived prompt background
 - Long-lived: misidentified heavy-flavoured hadrons

Better signal/background indentification by use of sidbands and invariant mass distribution in fit

- > Use of full region between 5.219 GeV/ c^2 and 5.559 GeV/ c^2 :
- > B_s signal: Gaussian distribution $G_s(m; M_s, \sigma_s)$
- > B_d background: Gaussian distribution $G_d(m; M_d, \sigma_d)$
- Other/combinatorial: Linear distribution: a·m + b

The decay $B_s \rightarrow J/\psi \varphi$: Systematic uncertainties

On the measurements:

- Background distribution: fits with and without background events
- S/B ratio: Number of B_s events varied to account for uncertainty in S/B
- Resolution on the angles: from validation tests
- Time-dependent efficiency: function varied by 1σ
- Angular efficiency:Fit without ang.efficiency correction, expansion up to L , R \leq 6, 10
- Misalignment: degradation of proper decay length (23 μ m \rightarrow 32 μ m)

Source	$ A_0(0) ^2$	$ A_{ }(0) ^2$	$ A_{\perp}(0) ^2$	$\bar{\Gamma}_s [\mathrm{ps}^{-1}]$	$\Delta\Gamma_s/\Gamma_s$
Bckg. distrib.	0.0034	0.0011	0.0045	0.0043	0.0059
S/B ratio	0.0037	0.0001	0.0024	0.0025	0.0055
Resolution	9		a -	0.00025	0.0040
Ang. distortion	0.0143	0.0061	0.0082	0.00083	0.0010
$c\tau$ distortion	0.0016	0.00073	0.0023	0.0221	0.0146
Alignment	0.00012	0.00042	0.00055	0.00040	0.0014
Total	0.0152	0.0063	0.0099	0.0227	0.0173

Search for the decay $B_s \rightarrow \mu^+ \mu^-$: Background distributions

Search for the decay $B_s \rightarrow \mu^+ \mu^-$: Offline selection

Thomas Speer

20th July 2007 - p. 39

Search for the decay $B_s \rightarrow \mu^+ \mu^-$: Systematic uncertainties

- Muon identification (1%): < 1%
- Tracking efficiency (1%): < 1%
- Misalignment (mass resolution): < 1%
- Misalignment (degradation of proper decay length): 10% / 50%
- Cut factorization: 15%
- L1 trigger efficiency: 10%
- Normalization: 15%
- Total systematic uncertainty: 25% on signal
- Background uncertainty dominated by statistical uncertainty: 160%