Flavor SU(3) analysis of charmless $B \rightarrow PP$ **Decays**

Yu-feng Zhou @ KEK

In collaboration with C.W.Chiang (NCUT)

C.W. Chiang and YFZ, JHEP0621,027(2006)

EPS-HEP2007 July.20,07, Manchester – p. 1/20

Outline

- ✓ Overview: the unitarity triangle(UT) and $B \rightarrow PP$ decays .
- \checkmark Trends in the latest data and "puzzles".
- \checkmark Determining UT from $B \rightarrow PP$ only.
 - \bigstar The flavor SU(3) topology
 - \star inputs and scenarios.
 - \star Global fitting results and implications
- \checkmark Predicting for $B_s \rightarrow PP$ modes
- Summary

The CKM Matrix

In SM, the CKM matrix is the only source of weak CP violation

$$V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} = \begin{pmatrix} 1 - \lambda^2/2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix}$$

Hierarchy in CKM matrix controlled by $\lambda \simeq 0.23$.

The CKM Matrix

In SM, the CKM matrix is the only source of weak CP violation

$$V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} = \begin{pmatrix} 1 - \lambda^2/2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix}$$

Hierarchy in CKM matrix controlled by $\lambda \simeq 0.23$.

$$V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0.$$

The CKM Matrix

In SM, the CKM matrix is the only source of weak CP violation

$$V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} = \begin{pmatrix} 1 - \lambda^2/2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix}$$

Hierarchy in CKM matrix controlled by $\lambda \simeq 0.23$.

UT and hadronic charmless B decays

Big effects of CP violation in ${\cal B}$ meson system

$\checkmark \alpha(\phi_2): B \rightarrow \pi\pi, \rho\pi$ (mixing-induced CPV)

EPS-HEP2007 July.20,07, Manchester – p. 4/20

UT and hadronic charmless B decays

Big effects of CP violation in ${\cal B}$ meson system

✓ $\alpha(\phi_2)$: $B \to \pi\pi, \rho\pi$ (mixing-induced CPV) ✓ $\beta(\phi_1)$: $B \to \pi^0 K_S, \eta^{(')} K_S$ (mixing-induce CPV)

EPS-HEP2007 July.20,07, Manchester – p. 4/20

UT and hadronic charmless B decays

Big effects of CP violation in ${\cal B}$ meson system

 $\checkmark \ \alpha(\phi_2): B \to \pi\pi, \rho\pi \ (\text{ mixing-induced CPV})$ $\checkmark \ \beta(\phi_1): B \to \pi^0 K_S, \eta^{(\prime)} K_S \ (\text{mixing-induce CPV})$ $\checkmark \ \gamma(\phi_3): B \to \pi K, 3\pi, \ (\text{direct CPV})$

EPS-HEP2007 July.20,07, Manchester – p. 4/20

CP violations in B decays

Mixing induced CP violation

Eg.

$$S = \frac{\Gamma_{\bar{B} \to f_{cp}}(t) - \Gamma_{B \to f_{cp}}(t)}{\Gamma_{\bar{B} \to f_{cp}}(t) + \Gamma_{B \to f_{cp}}(t)} \sim Im(e^{-2i\beta}\frac{\bar{A}}{A})$$

★ $B \to J/\psi K_S$: S=sin 2 β = 0.687 ± 0.032.

 $\star \quad B \to \phi K_S: \ S \simeq \sin 2\beta = 0.39 \pm 0.18$

 \checkmark Direct CP violation (need strong phase)

$$a_{CP} = \frac{\Gamma_{\bar{B}\to\bar{f}} - \Gamma_{B\to f}}{\Gamma_{\bar{B}\to\bar{f}} + \Gamma_{B\to f}} \sim \sin\gamma\sin\delta$$

 $B \to \pi \pi, \pi K, \pi \eta(\eta'), K \eta(\eta')$ etc. Important to independently determine α , β and γ .

Effective Hamiltonian for B decays

Effective Hamiltonian

 $\mathcal{H}_{eff} = \frac{G_F}{\sqrt{2}} \left[V_{ub} V_{uq}^* \left(C_1 O_1^u + C_2 O_2^u \right) - V_{tb} V_{tq}^* \left(\sum_{i=3}^{10} C_i O_i + C_g O_g \right) \right]$

Theoretical calculations for matrix elements

Charming penguins important.

- ✓ QCD factorization Beneke, Buchala, Neubert, Sachrajda Strong phases from Penguin contractions and hard gluon exchange. Λ/m_B corrections hard to estimate.
- ✓ Perturbative QCD
 Li, Kuem and Sanda
 Strong phases from annihilation diagrams
 ✓ Soft collinear effective theory
 Baur, Pirjol, Stewart

EPS-HEP2007 July.20,07, Manchester – p. 6/20

flavor flow topology within SU(3)

Quark flavor flow diagrams:

Chau 84,91, Savage, Wise, 89, Gronau 95

NOT Feynman diagrams

T: tree C: color-suppressed \mathcal{P} : QCD penguin S: singlet penguin \mathcal{P}_{EW} : EW penguin

- \mathcal{P}_{EW}^{C} : color-suppressed
- \mathcal{A} : Annihilation
- \mathcal{E} : Exchange

 \mathcal{P}_A : P-annihilation PS-HEP2007 July.20,07, Manchester – p. 7/20

Diagrammatic decomposition

 $B \to \pi\pi$ and πK amplitudes

$$\begin{split} \bar{\mathcal{A}}(\pi^{+}\pi^{-}) &= -(\mathcal{T} + \mathcal{E} + \mathcal{P} + \mathcal{P}_{A} + \frac{2}{3}\mathcal{P}_{EW}^{C}) \\ \bar{\mathcal{A}}(\pi^{0}\pi^{0}) &= -\frac{1}{\sqrt{2}}(\mathcal{C} - \mathcal{E} - \mathcal{P} - \mathcal{P}_{A} + \mathcal{P}_{EW} + \frac{1}{3}\mathcal{P}_{EW}^{C}) \\ \bar{\mathcal{A}}(\pi^{0}\pi^{-}) &= -\frac{1}{\sqrt{2}}(\mathcal{T} + \mathcal{C} + \mathcal{P}_{EW} + \mathcal{P}_{EW}^{C}) \\ \bar{\mathcal{A}}(\pi^{+}K^{-}) &= -(\mathcal{T}' + \mathcal{P}' + \frac{2}{3}\mathcal{P}_{EW}'^{C}) \\ \bar{\mathcal{A}}(\pi^{0}\overline{K}^{0}) &= -\frac{1}{\sqrt{2}}(\mathcal{C}' - \mathcal{P}' + \mathcal{P}_{EW}' + \frac{1}{3}\mathcal{P}_{EW}'^{C}) \\ \bar{\mathcal{A}}(\pi^{-}\overline{K}^{0}) &= -\mathcal{A}' + \mathcal{P}' - \frac{1}{3}\mathcal{P}_{EW}'^{C} \\ \bar{\mathcal{A}}(\pi^{0}K^{-}) &= -\frac{1}{\sqrt{2}}(\mathcal{T}' + \mathcal{C}' + \mathcal{A}' + \mathcal{P}' + \mathcal{P}_{EW}' + \frac{2}{3}\mathcal{P}_{EW}'^{C}) \end{split}$$

 $B \rightarrow \eta^{(\prime)} K$ amplitudes (S involved, $\theta = \sin^{-1}(1/3) \simeq 19.5^{\circ}$)

$$\bar{\mathcal{A}}(\bar{K}^{0}\eta') = \frac{1}{\sqrt{6}}(\mathcal{C}' + 3\mathcal{P}' + 4\mathcal{S}' - \frac{1}{3}\mathcal{P}'_{EW} - \frac{1}{3}\mathcal{P}'_{EW})$$

EPS-HEP2007 July 20.07. Manchester – p. 8

factorize out CKM elements

Define
$$\lambda_u^{(s)} = V_{ub}V_{ud(s)}^*$$
, $\lambda_c^{(s)} = V_{cb}V_{cd(s)}^*$

$$\begin{split} \bar{A}_{\pi^{+}\pi^{-}} &= \lambda_{u}(T - P_{tu} - \frac{2}{3}P_{EW,tu}^{C}) - \lambda_{c}(P + \frac{2}{3}P_{EW}^{C}) \\ \bar{A}_{\pi^{-}\pi^{0}} &= -\frac{1}{\sqrt{2}} \left[\lambda_{u}(T + C - \hat{P}_{EW,tu}) - \lambda_{c}\hat{P}_{EW} \right] \\ \bar{A}_{\pi^{0}\pi^{0}} &= \frac{1}{\sqrt{2}} \left[\lambda_{u}(-C - P_{tu} + \hat{P}_{EW,tu} - \frac{2}{3}P_{EW,tu}^{C}) - \lambda_{c}(P - \hat{P}_{EW} + \frac{2}{3}P_{EW}^{C}) \right] \\ \bar{A}_{\pi^{+}K^{-}} &= \lambda_{u}^{s}(T' - P_{tu}' - \frac{2}{3}P_{EW,tu}') - \lambda_{c}^{s}(P' + \frac{2}{3}P_{EW}^{C}) \\ \bar{A}_{\pi^{0}\bar{K}^{0}} &= \frac{1}{\sqrt{2}} \left[\lambda_{u}^{s}(-C' - P_{tu}' + \hat{P}_{EW,tu}' - \frac{2}{3}P_{EW,tu}') - \lambda_{c}^{s}(P' - \hat{P}_{EW}' + \frac{2}{3}P_{EW}^{C}) \right] \\ \bar{A}_{\pi^{-}\bar{K}^{0}} &= \lambda_{u}^{s}(P_{tu}' - \frac{1}{3}P_{EW,tu}') + \lambda_{c}^{s}(P' - \frac{1}{3}P_{EW}') \\ \bar{A}_{\pi^{0}K^{-}} &= -\frac{1}{\sqrt{2}} \left[\lambda_{u}^{s}(T' + C' - P_{tu}' - \hat{P}_{EW,tu}' + \frac{1}{3}P_{EW}') - \lambda_{c}^{s}(P' + \hat{P}_{EW}' - \frac{1}{3}P_{EW}') \right] \end{split}$$

SU(3) Limit: T = T', P = P', ...

SU(3) breaking brings back model-dependence EPS-HEP2007 July 20.07. Manchester – p. 9/20

Relative sizes of diagrams

Estimate from naive(QCD) factorization: $(2 < N_c < \infty)$

- $T \simeq a_1 \cdot k \qquad \qquad 0.9 \sim 1.1 \qquad \qquad 0.91$
- $C \simeq a_2 \cdot k$ $-0.33 \sim 0.25$ 0.18 0.08i
- $P \simeq (a_4 + a_6 R) \cdot k$ $0.09 \quad 0.085 + 0.011i$
- $P_{EW} \simeq -\frac{3}{2}(a_7 a_9) \cdot k \qquad 0.013 \sim 0.015 \qquad 0.0013$ $P_{EW}^C \simeq -\frac{3}{2}(a_8R + a_{10}) \cdot k \quad -0.0023 \sim 0.003 \quad 0.0017 0.0008i$

with $R = m_{\pi}^2/(m_b - \hat{m})\hat{m}$ and $k \simeq 0.92$. Typical size $\frac{C}{T} \le 0.2, \quad \frac{P}{T} \simeq 0.09, \quad \frac{P_{EW}}{P} \simeq 0.15$

EPS-HEP2007 July.20,07, Manchester – p. 10/20

The data (WA)

	$Br(\times 10^{-6})$	theo.	a_{CP}	S
$\pi^+\pi^-$	5.25 ± 0.24	~ 10.0	0.27 ± 0.07	-0.58 ± 0.09
$\pi^0\pi^0$	1.31 ± 0.21	~ 0.12	-0.15 ± 0.32	
$\pi^0\pi^-$	5.7 ± 0.4	~ 5.4	0.05 ± 0.05	
$\pi^+ K^-$	19.7 ± 0.6	~ 15	-0.09 ± 0.01	
$\pi^0 \bar{K}^0(K_S)$	9.96 ± 0.62	~ 5.7	0.064 ± 0.11	(0.33 ± 0.21)
$\pi^- \bar{K}^0$	$21.9 \pm 1.$	~ 16	0.01 ± 0.02	
$\pi^0 K^-$	12.8 ± 0.6	~ 10	0.05 ± 0.03	
$K^0\eta'$	64.9 ± 4.4	~ 20	-0.09 ± 0.06	0.60 ± 0.08

EPS-HEP2007 July.20,07, Manchester – p. 11/20

Trends of the data and "puzzles"

 $\pi\pi$ modes (tree dominant)

Fleischer, 07

.20.07. Manchester – p. 12/20

 $\checkmark \text{ large } 2Br(\pi^0\pi^0)/Br(\pi^+\pi^-) = 0.50 \pm 0.08$ $\implies \text{require } C/T = 0.6 \sim 0.7$

 $\pi K \mod (QCD penguin dominant)$

- ✓ Large $A_{cp}(\pi^+K^-) = -0.098 \pm 0.015$ but tiny $A_{cp}(\pi^0K^-) = 0.05 \pm 0.03$ with opposite sign. ⇒ require $C'/T' = 1 \sim 1.2$
- ✓ Small $S(\pi^0 K_S) = 0.33 \pm 0.21$ compared with $S(J/\psi K_S) = 0.675 \pm 0.026 \implies$ need new physics?

 \implies require $S/P \sim 0.4$

 $K\eta'$ modes (QCD penguin dominant)

✓ Huge $Br(\eta' K^-(K^0)) = 69.7(64.9) \times 10^{-6}$

Global analysis for charmless $B \rightarrow PP$

Motivations:

- ✓ The data is now precise enough for an independent determination of UT from B → PP only. New physics (if exists) may shown up from a UT with different size and shape.
- The extracted hadronic amplitudes are valuable for understanding QCD dynamics and making predictions for yet to be seen modes
- Inputs Known CKM matrix elements, $|V_{us}|$, $|V_{ub}|$ and $|V_{cb}|$. All charmless $B \to PP$ modes: $\pi\pi$, πK , ($\eta^{(')}K, \pi, \eta^{(')}\dots$).

Parameters T, C, P, (S), P_{EW} with strong phases and $\gamma(\phi_3)$.

Scenarios

- **\star** SU(3) symmetry with three SU(3) breaking schemes.
 - ★ Ignoring subleading diagrams P_{EW}^C , E, A.
 - ★ Including NP effects in electroweak penguin sector, for πK modes and all $\Delta S = 1$ modes. EPS-HEP2007 July.20.07, Manchester p. 13/20

Fit results: SM case $(\pi \pi + \pi K)$

The global fit is worsen with updated data, mainly due to $S(\pi^0 K_S)$. Beak, London 07

Goodness of fit: $\chi^2/dof = 16.4/12$ Chiang and YFZ06 Best fitted amplitudes

 $T = 0.571^{+0.045}_{-0.040} \qquad C = 0.360 \pm 0.046 \qquad \delta_C = -49.3 \pm 9.1$ $P = 0.122 \pm 0.002 \quad \delta_P = -17.6 \pm 2.7 \qquad P_{EW} = 0.011 \pm 0.001$ $\delta_{P_{EW}} = -18.7 \pm 4.0$

 \checkmark Large C/T = 0.63 required by both $\pi^0 \pi^0$ and πK .

 \checkmark Significant phase difference -49.3° between C and T

✓ The factorization model based SU(3) breaking scheme agree with the data best: $T'/T = f_K/f_{\pi}$ and P' = PEPS-HEP2007 July 20.07, Manchester – p. 14/20

best fitted UT ($\pi\pi + \pi K$)

 $\rho = 0.143 \pm 0.033$ $\eta = 0.418 \pm 0.029$ $A = 0.807 \pm 0.012$ phase angles \checkmark larger $\gamma = (72 \pm 5)^{\circ}$ \checkmark larger $\beta = (26 \pm 2)^{\circ}$ \checkmark smaller $\alpha = (83 \pm 7)^{\circ}$ \checkmark larger size of UT

best fitted quantities

Overall agreement OK. Fit favors slightly larger $\pi^0 \pi^0$, larger $\pi^+ K^-$ and smaller $\pi^0 K^ S(\pi^0 K_S)$ can NOT be reproduced.

EPS-HEP2007 July.20,07, Manchester – p. 16/20

best fitted UT with $P\eta^{(\prime)}$

 $\rho = 0.087 \pm 0.029$ $\eta = 0.379 \pm 0.027$ $A = 0.809 \pm 0.012$ phase angles \checkmark larger $\gamma = (77 \pm 4)^{\circ}$ \checkmark same $\beta = (23 \pm 2)^{\circ}$ $\sqrt{}$ smaller $\alpha = (80 \pm 6)^{\circ}$

 \checkmark larger size of UT

Goodness of fit $\chi^2/dof = 32.9/22$

SM predictions for B_s **modes**

✓ Predicted K^+K^- is well bellow the CDF data ✓ Large $\eta'\eta'$ is a consequence of large S.

EPS-HEP2007 July.20,07, Manchester – p. 18/20

Fit with new physics in πK

Adding a new amplitudes to the electroweak penguin sector

 $V_{ts}V_{td}^*P_{EW} \to V_{ts}V_{td}^*P_{EW} + |V_{ts}V_{td}^*|Ne^{i(\phi+\delta)}$

Result: large $N/P_{EW} \simeq 3.3$

 $N = 0.04 \pm 0.008, \phi_N = (92 \pm 4)^{\circ}, \delta_N = (-14 \pm 5)^{\circ}$

. Manchester – p. 19/20

 χ^2/dof drops from 16.4/12 to 4.3/10 Large N/P_{EW} driven by

✓ tension between $\pi\pi$ and πK data on C/T. ✓ Low value of $S(\pi^0 K_S)$ When fit with $P\eta^{(')}$ modes, we find

 $N = 0.001 \pm 0.005$ compatible with zero.

Summary

- ' Falvor SU(3)based global fits for charmless $B \to PP$ show an overall agreement with the SM. The results favor a C/T lager than the theoretical expectations with significant strong phase difference. The A_{CP} "puzzle" can be accommodated but not the low $S(\pi^0 K_S)$ which is the main source of the inconsistency.
- ✓ B → PP modes favor a larger γ and J_{CP}, especially when $Kη^{(')}$ modes are included.
- ✓ From data fitting point of view, a new physics amplitude associated with P_{EW} can greatly improve the agreement with the $\pi^0 K_S$ data. However no significant effects are found in fits with $P\eta^{(')}$ modes.