An update on charming penguins in charmless B decays

Maurizio Pierini

CERN-PH

in collaboration with:

Marco Ciuchini

paper in preparation

Università Roma Tre and INFN Roma III Enrico Franco, Guido Martinelli, Luca Silvestrini Università Roma "La Sapienza" & INFN Roma I

07/09/07

Current Experimental Situation

- The establishment of CP violation in K⁺π[−] and the observed discrepancy with respect to K⁺π⁰ called for a "puzzle" in Kπ decays. For us, this is just the indication that charming and GIM penguins are not the end of the story
- + the enhancement with time of $BR(K^0\pi^0)$ introduced some tension in the commonly accepted models, interpreted as a possible hint of SU(2) breaking
- The large set of measurements (including S and C) from BaBar and Belle allows to study not only Kπ but also PV modes

The OPE and decay amplitudes

Since $m_b \sim 4GeV$ and $m_W \sim 80GeV$, weak interaction can be replaced by an effective local theory, contracting the W propagator to a point (similar approach with t quark)

This operation breaks the ultraviolet behavior of the theory.

$$\int \frac{d^4 p}{p^6} \approx \int \frac{dp}{p^3} \to 0 \qquad \longrightarrow \qquad \int \frac{d^4 p}{p^4} \approx \int \frac{dp}{p} \to \infty$$

To remove the ∞ after integrating out the heavy degrees of freedom we need to renormalize the theory. New operators couplings are generated

07/09/07

The effective Hamiltonian

After the renormalization of the effective theory we get

$$\mathcal{H}_{\text{eff}} = \frac{G_F}{\sqrt{2}} \sum_{p=u,c} \lambda_p \left(C_1 Q_1^p + C_2 Q_2^p + \sum_{i=3,\dots,10} C_i Q_i + C_{11} Q_{12} + C_{12} Q_{12} \right) + \text{h.c.}$$

$$\begin{array}{c} \mathbf{Tree \ level} \\ \mathbf{operators} \\ Q_1^p = (\bar{p}b)_{V-A}(\bar{s}p)_{V-A}, & Q_2^p = (\bar{p}_i b_j)_{V-A}(\bar{s}_j p_i)_{V-A}, \\ Q_3 = (\bar{s}b)_{V-A} \sum_q (\bar{q}q)_{V-A}, & Q_4 = (\bar{s}_i b_j)_{V-A} \sum_q (\bar{q}_j q_i)_{V-A}, \\ Q_5 = (\bar{s}b)_{V-A} \sum_q (\bar{q}q)_{V+A}, & Q_6 = (\bar{s}_i b_j)_{V-A} \sum_q (\bar{q}_j q_i)_{V+A}, \\ Q_7 = (\bar{s}b)_{V-A} \sum_q \frac{3}{2} e_q(\bar{q}q)_{V+A}, & Q_8 = (\bar{s}_i b_j)_{V-A} \sum_q \frac{3}{2} e_q(\bar{q}_j q_i)_{V+A}, \\ Q_9 = (\bar{s}b)_{V-A} \sum_q \frac{3}{2} e_q(\bar{q}q)_{V-A}, & Q_{10} = (\bar{s}_i b_j)_{V-A} \sum_q \frac{3}{2} e_q(\bar{q}_j q_i)_{V-A}, \\ Q_{7\gamma} = \frac{-e}{8\pi^2} m_b \, \bar{s}\sigma_{\mu\nu}(1+\gamma_5) F^{\mu\nu} b, & Q_{8g} = \frac{-g_s}{8\pi^2} m_b \, \bar{s}\sigma_{\mu\nu}(1+\gamma_5) G^{\mu\nu} b, \end{array}$$

(cromo)magnetic operators

07/09/07

Contractions of the H_{eff}

Contracting (Wick theorem) H_{eff} on initial and final states

$$A(B^{0} \to K^{+} \pi^{-}) = \langle K^{+} \pi^{-} | H_{eff} | B^{0} \rangle = \sum_{i=1,10} C_{i}(\mu) \langle K^{+} \pi^{-} | Q_{i}(\mu) | B^{0} \rangle$$

All the perturbative physics (scale > μ) in the Wilson coeff. $C_i(\mu)$. All the non-perturbative physics (scale < μ) in the matrix elements. The unphysical dependence on μ has to cancel out. One operator can produce several diagram topologies. Example: tree level operators generate <Q>_{DE}(μ) and <Q>_{CE}(μ)

07/09/07

The RGI combinations

One can rearrange contractions into Renormalization Group Invariant combinations, corresponding to physical quantities (Buras & Silvestrini, hep-ph/9812392). Example: T and T_c (trees) correspond to the RGI's E_1 and E_2

 $E_1 = C_1 < Q_1 >_{DE} + C_2 < Q_2 >_{CE}$

 $E_2 = C_1 < Q_1 >_{CE} + C_2 < Q_2 >_{DE}$

Penguins are more complicated

$$P_{1} = C_{1} \langle Q_{1} \rangle_{CP}^{c} + C_{2} \langle Q_{2} \rangle_{DP}^{c} + \sum_{i=2}^{5} \left(C_{2i-1} \langle Q_{2i-1} \rangle_{CE} + C_{2i} \langle Q_{2i} \rangle_{DE} \right) + \sum_{i=3}^{10} \left(C_{i} \langle Q_{i} \rangle_{CP} + C_{i} \langle Q_{i} \rangle_{DP} \right) + \sum_{i=2}^{5} \left(C_{2i-1} \langle Q_{2i-1} \rangle_{CA} + C_{2i} \langle Q_{2i} \rangle_{DA} \right) P_{1}^{GIM} = C_{1} \left(\langle Q_{1} \rangle_{CP}^{c} - \langle Q_{1} \rangle_{CP}^{u} \right) + C_{2} \left(\langle Q_{2} \rangle_{DP}^{c} - \langle Q_{2} \rangle_{DP}^{u} \right)$$

Every RGI correponds to a contraction of the $J_{\mu}J^{\mu}$ interaction term of the Standard Model (i.e. RGIs are the physical quantities)

07/09/07

The Decay Amplitude

The final formula is simplified and the dependence on μ is formally canceled out

$$A(B^{0} \rightarrow K^{+} \pi^{-}) = V_{ts} V_{tb}^{*} \times P_{I} - V_{us} V_{ub}^{*} \times \{E_{I} - P_{I}GIM\}$$

$$A(B^{+} \rightarrow K^{0} \pi^{+}) = -V_{ts} V_{tb}^{*} \times P_{I} + V_{us} V_{ub}^{*} \times \{A_{I} - P_{I}GIM\}$$

$$\sqrt{2} \cdot A(B^{+} \rightarrow K^{+} \pi^{0}) = V_{ts} V_{tb}^{*} \times P_{I} - V_{us} V_{ub}^{*} \times \{E_{I} + E_{2} + A_{I} - P_{I}GIM\}$$

$$\sqrt{2} \cdot A(B^{0} \rightarrow K^{0} \pi^{0}) = -V_{ts} V_{tb}^{*} \times P_{I} - V_{us} V_{ub}^{*} \times \{E_{2} + P_{I}GIM\}$$

We know C(μ) from perturbative calculations

We still miss a technique to calculate matrix elements to obtain the values of the RGI

Perturbative Approaches

 $\langle B^{0}|J_{\mu}J^{\mu}|K\pi\rangle = \langle B^{0}|J_{\mu}|\pi\rangle\langle 0|J^{\mu}|K\rangle(1+O(\alpha_{s}))+O(\frac{\Lambda_{OCD}}{m})$

 A clear demonstration that penguins do factorize is still missing (Bauer et al. hep-ph/0401188 vs Beneke et al. hep-ph/0411171)
 As previously pointed out (Ciuchini et al. hep-ph/9703353) Λ_{QCD}/m_b contributions may play a relevant role in phenomenology (m_b 4∞)

07/09/07

RGI~ Λ_{QCD}/m_b in b \rightarrow s decays

07/09/07

A Few Comments

One can move from the exact calculation to some model dependent approach, but all $\Lambda_{\text{QCD}}/m_{\text{b}}$ terms have to be considered

P₁ is doubly Cabibbo enhanced, so it plays the major role

Nevertheless, the others are important

In principle: we have enough observables to determine all the parameters (4 complex RGI) and keep some predictive power
 In practice: we are not precisely sensitive to the doubly Cabibbo suppressed A_{QCD}/m_b terms (which are ~% corrections to BR's)
 What we can do:
 Describe E₁ in factorization

- Fit for the leading term P₁
- Vary the other in some *a-priori fixed range*
- \Rightarrow Use BR and direct CP asymmetries to obtain information on S(K⁰ π^{0})

We can still obtain a prediction on S within the Standard Model, but the error on it will depend on the chosen range. So, we scan the upper bound on the range

Result on $B \rightarrow K\pi$ (I)

11

07/09/07

Result on $B \rightarrow K\pi$ (II)

07/09/07

Result on $B \rightarrow K\pi$ (III)

07/09/07

$B \rightarrow KK$ and the magnitude of $O(\Lambda_{QCD}/m_b)$

3 RGI (i.e. 5 real parameters to fit) 2BR, 2 direct CP asymmetry and S(K+K-)

$$A(B^{+} \to K^{+}K^{0}) = -V_{td} V_{tb}^{*} \times P + V_{ud} V_{ub}^{*} \times \{A_{l} - P_{l}^{GIM}\}$$
$$A(B^{+} \to K^{0}K^{0}) = -V_{td} V_{tb}^{*} \times P + V_{ud} V_{ub}^{*} \times \{P_{l}^{GIM}\}$$

Large values of the parameters are suppressed. Even with SU(3) broken @100% we do not expect large enhancements

Test of SM: $S_{K\pi}$ vs $C_{K\pi}$

Since C is better determined by the fit than by the experiment, we have information on it from the other variables + SU(2) relations (all possible sum rules you can imagine are implemented). We can remove also C from the set of inputs and look at the agreement in the S vs C plane

What SUSY can do

Result on $B \rightarrow K\rho$ (I)

17

.

Result on $B \rightarrow K\rho$ (II)

07/09/07

M. Pierini - EPS2007 Manchester

Result on $B \rightarrow K\rho$ (III)

Test of SM: $S_{K\rho}$ vs $C_{K\rho}$

Since C is better determined by the fit than by the experiment, we have information on it from the other variables + SU(2) relations (all possible sum rules you can imagine are implemented). We can remove also C from the set of inputs and look at the agreement in the S vs C plane

07/09/07

07/09/07

Result on $B \rightarrow K^*\pi$ (II)

07/09/07

Result on $B \rightarrow K^*\pi$ (III)

07/09/07

Determination of γ with UL@1.0

07/09/07

Determination of γ with UL@0.5

07/09/07

γ as a function of the UL

Conclusions

The zoology of b-s transitions looks more rich that a land full of trees and charming penguins The perturbative calculations can describe the main features of the decays but additional effort is needed to match the experimental precision \Rightarrow We are not sensitive yet to Λ_{QCD}/m_b CKM suppressed corrections, which have impact on the prediction of S in NP sensitive modes We can still obtain some information from data, but the upper value of the allowed range is needed as external input \Rightarrow too low values produce deviation from data ($A_{CP}(K^{\dagger}\pi^{0})$) \rightarrow UV~1 (ignoring Λ_{QCD}/m_b hierarchy) reduces predictive power Still, experimental measurements of S are the limiting factor of a See backup slides meaningful SM test (or ask)for \Rightarrow With Λ_{QCD}/m_b in [0.0,0.5]E₁ **φΚ**, η**Κ**, ω**Κ** Good agreement with data and $B_s \rightarrow KK$ \rightarrow Confirmed by B \rightarrow KK data (no CKM suppression) In this picture, $S(K^0\pi^0)$ emerges as the most predictive test of the SM

07/09/07

Result on $B \rightarrow \phi K$ (I)

07/09/07

Result on $B \rightarrow \phi K$ (II)

Result on $B \rightarrow \eta$ 'K and $B \rightarrow \omega K$ (I)

31

Result on $B \rightarrow \eta$ 'K and $B \rightarrow \omega K$ (II)

32

Result on $B \rightarrow \eta$ 'K and $B \rightarrow \omega K$ (III)

 $B \rightarrow \eta' K$

07/09/07

SU(3) Predictions on $B_s \rightarrow KK$

 $B_s \rightarrow K^+ K^-$

07/09/07