International Europhysics Conference on High Energy Physics, 2007

Charmless Hadronic B Decays at BABAR

- July 20 -
J. P. Burke

for the $B A B A R$ collaboration

Outline of talk

- Quick intro to charmless hadronic B decays, overview of $B A B A R$ detector, common analysis techniques
- Preliminary BABAR results:
- New previously unmeasured ($K^{+} K^{-} \pi^{+}$)/unstudied (the rest):
$B^{+} \rightarrow K^{+} K^{-} \pi^{+} \quad$ Even number of kaons in final state
$B^{+} \rightarrow a_{1}(1260) \pi \quad B \rightarrow A P$, rather than well covered $B \rightarrow P P, V P$
$B \rightarrow b_{1}(1235) h^{+} \quad$ Also $B \rightarrow A P, G$-parity suppression
$B^{+} \rightarrow \eta_{X} K^{+} \quad$ Possible η, η^{\prime} excitations, no definitive theory
- Updated:
$B \rightarrow K \pi^{0}, \pi \pi^{0} \quad B \rightarrow K \pi$ excellent probe for new physics
$B \rightarrow h_{1} h_{2}\left(h_{1}=\eta, \eta^{\prime}, \omega ; h_{2}=K^{+}, \pi^{+}, K^{0}\right)$, followed by summary

General overview of charmless hadronic B decays

Penguin

CKM-suppressed tree

- Interfering SM amplitudes ... good place to look for direct CPV—see Nicolas Arnaud's talk
- Ideal environments to study loop processes (where new physics may enter)
- Extract CKM parameters—see talks by Mark Allen, Josh Thompson, Emmanuel Latour (c.f. $b \rightarrow c$ results to constrain NP)
- Use measured rates phenomenologically to test/develop theoretical models (factorization, pQCD, SU(3) flavour symmetry, ...)

The experiment

PEP-II collider: $9 \mathrm{GeV} e^{-}, 3.1 \mathrm{GeV} e^{+}$, data taking commenced 1999

BABAR Detector

$$
\approx 232 \times 10^{6} B \bar{B} \text { pairs }
$$

$$
\left(B^{+} \rightarrow a_{1}(1260) \pi,\right.
$$

$$
\left.B^{+} \rightarrow \bar{K}^{* 0} K^{+}\right)
$$

$$
\approx 383 \times 10^{6} B \bar{B} \text { pairs }
$$

(the rest)

Common analysis strategy

- Aim is to isolate very small signal from vast backgrounds
- Main background due to continuum events, $e^{+} e^{-} \rightarrow d \bar{d}, u \bar{u}, s \bar{s}, c \bar{c}$
- (\# signal events):(\# continuum events) enhanced using
- Particle ID systems
- Cutting on discriminating event variables
- Discriminating variables include
- Kinematic: $m_{E S}, \Delta E$-use beam and decay products' (E, \vec{p})
- Event shape: B events isotropic, continuum events jet-like
- Combine in Fisher discriminants, \mathcal{F}, and neural networks, \mathcal{N}
- Resonance: invariant mass, helicity angle (related to spin)
- Signal parameters extracted using maximum likelihood (ML)
- Must also treat background from B events
$B^{+} \rightarrow K^{+} K^{-} \pi^{+}$-preliminary
- Heavily suppressed $B^{+} \rightarrow \bar{K}^{* 0} K^{+}$expected to occur via $b \rightarrow d$ penguin, no tree
- Search conducted with no significant signal observed:

$$
\begin{array}{c|c}
\mathcal{B}\left(B^{+} \rightarrow \bar{K}^{* 0}(892) K^{+}\right)<1.1 \times 10^{-6 \dagger} \\
\mathcal{B}\left(B^{+} \rightarrow \bar{K}_{0}^{* 0}(1430) K^{+}\right)<2.2 \times 10^{-6} & \text { arXiv:0706.1059 [hep-ex] }
\end{array}
$$

in agreement with pQCDF and $\operatorname{SU}(3)$ predictions
\dagger : assists in bounding $\left|\sin 2 \beta\left(B^{0} \rightarrow J / \psi K_{S}^{0}\right)-\sin 2 \beta_{e f f}\left(B^{0} \rightarrow \phi K_{S}^{0}\right)\right|<0.11$ (in SM)

- $\mathcal{B}\left(B^{+} \rightarrow \phi \pi^{+}\right)<2.4 \times 10^{-7}$ (also $b \rightarrow d$ penguin, need three gluons or Z^{0} / γ from loop) arXiv:hep-ex/0605037
- Other (known, charmless) possible contributions to Dalitz plot include f_{0} 's and non-resonant ... not expected to be very large
- Enough for a significant signal in the inclusive decay? ...

$B^{+} \rightarrow K^{+} K^{-} \pi^{+}$_preliminary

- ML technique applied to full Dalitz plot using $m_{E S}, \Delta E, \mathcal{N}$
- Good sized (429 events) signal observed:

$$
\mathcal{B}\left(B^{+} \rightarrow K^{+} K^{-} \pi^{+}\right)=(5.0 \pm 0.5 \pm 0.5) \times 10^{-6} 9.6 \sigma
$$

- Dominated by broad structure in $K^{+} K^{-}$spectrum $\sim 1.5 \mathrm{GeV} / c^{2}$
- Similar structure seen in DP analyses of $B^{+} \rightarrow K^{+} K^{-} K^{+}$, $B^{0} \rightarrow K^{+} K^{-} K^{0}$ (not in $K^{ \pm} K^{0}$ spectrum, not in D decays)dubbed $X_{0}(1550)$ by BABAR, $f_{X}(1500)$ by Belle

DP ${ }_{s} \mathcal{P}$ lot
$m_{K+K}-s^{\mathcal{P}}$ lot
J. P. Burke, University of Liverpool

$B^{+} \rightarrow a_{1}(1260) \pi$-preliminary

- First evidence of $B^{+} \rightarrow a_{1}^{+}(1260) \pi^{0}$ and $B^{+} \rightarrow a_{1}^{0}(1260) \pi^{+}$ $\left(b \rightarrow u \bar{u} d\right.$ tree + penguin), final state $\pi^{+} \pi^{-} \pi^{+} \pi^{0}$
- ML using $m_{E S}, \Delta E, \mathcal{F}$, invariant mass of reconstructed a_{1}, helicity angle; results consistent with factorization predictions
- With $\mathcal{B}\left(a_{1}^{+}(1260) \rightarrow 3 \pi^{ \pm}\right)=\frac{1}{2}, \mathcal{B}\left(a_{1}^{0}(1260) \rightarrow \pi^{+} \pi^{-} \pi^{0}\right)=1$:

\longleftarrow Projection plots of $m_{E S}$ (likelihood cut applied)
- Helpful for measurement of UT angle α from $\rho \pi$
$B \rightarrow b_{1}(1235) h^{+}$-preliminary
- Recent searches of $B \rightarrow A \pi$ have revealed rather large \mathcal{B} 's, e.g.
$\mathcal{B}\left(B^{0} \rightarrow a_{1}^{ \pm}(1260) \pi^{\mp}\right)=(33.2 \pm 3.8 \pm 3.0) \times 10^{-6}$ PRL 97,
051802 , and $B^{+} \rightarrow a_{1}(1260) \pi$ as shown on previous slide
- Two types of axial-vector mesons, A :
$-a_{1}$ is the $I^{G}=1^{-}$member of the $J^{P C}=1^{++}{ }^{3} P_{1}$ nonet ($\uparrow \uparrow$)
$-b_{1}$ is the $I^{G}=1^{+}$member of the $J^{P C}=1^{+-}{ }^{1} P_{1}$ nonet ($\uparrow \downarrow$)
- $K_{1 A}\left(K_{1 B}\right)$ member of ${ }^{3} P_{1}\left({ }^{1} P_{1}\right)$ nonet, $K_{1 A}$ and $K_{1 B}$ mix to give physical K_{1} (1270) and $K_{1}(1400)$
- Mixing angle θ known (within a few ${ }^{\circ}$'s) up to twofold ambiguity symmetric about $\frac{\pi}{4}\left(32^{\circ}\right.$ and 58°)
- From naïve factorization (for non-G-parity-suppressed modes)
- hep-ph/0602243 v4: $\mathcal{B}\left(B \rightarrow b_{1} h^{+}\right) \approx 4-30 \times 10^{-6}$ with $\theta=32^{\circ}, \mathcal{B}\left(B \rightarrow b_{1} h^{+}\right) \approx 4-20 \times 10^{-7}$ with $\theta=58^{\circ}$
- arXiv:0705.1181 [hep-ph]: $\mathcal{B}_{32^{\circ}}\left(B \rightarrow b_{1} h^{+}\right) \approx 18-36 \times 10^{-6}$

$$
B \rightarrow b_{1}(1235) h^{+} \text {—preliminary }
$$

- $b \rightarrow u \bar{u} q_{d}\left(q_{d}=d, s\right)$ tree (K Cabibbo suppressed wrt $\left.\pi\right)+$ penguin (π suppressed wrt K)
- b_{1} reco'd as $b_{1} \rightarrow \omega\left(\rightarrow \pi^{+} \pi^{-} \pi^{0}(\rightarrow \gamma \gamma)\right) \pi$
- ML: $m_{E S}, \Delta E, \mathcal{F}$, invariant masses of reconstructed b_{1} and ω
- First observations of $B \rightarrow b_{1}(1235) h^{+}$decays:

$$
\begin{array}{ll}
\mathcal{B}\left(B^{+} \rightarrow b_{1}^{0}(1235) \pi^{+}\right)=(6.6 \pm 1.7 \pm 1.0) \times 10^{-6} & 4.0 \sigma \\
\mathcal{B}\left(B^{+} \rightarrow b_{1}^{0}(1235) K^{+}\right)=(8.8 \pm 1.7 \pm 1.0) \times 10^{-6} & \begin{array}{ll}
\underline{b \pi \Rightarrow \theta} \\
\mathcal{B}\left(B^{0} \rightarrow b_{1}^{\mp}(1235) \pi^{ \pm}\right)=(10.9 \pm 1.2 \pm 0.9) \times 10^{-6} \dagger & 8.9 \sigma \\
\mathcal{B}\left(B^{0} \rightarrow b_{1}^{-}(1235) K^{+}\right)=(7.4 \pm 1.0 \pm 1.0) \times 10^{-6} & 6.1 \sigma \\
\underline{b K i n} & \underline{\text { between }}
\end{array}
\end{array}
$$

${ }^{\dagger}$: Asymmetry measurement: $b_{1}^{+} \pi^{-}$heavily suppressed $((0 \pm 10) \%)$ wrt $b_{1}^{-} \pi^{+}$follows (in SM) from b_{1} decay const. ~ 0 (a prediction of G-parity suppression)
Best agreement: hep-ph/0602243 (32 $)$, but $b_{1} K \mathcal{B}$'s smaller than predicted

$B \rightarrow b_{1}(1235) h^{+}$-preliminary

Top row: $B^{+} \rightarrow b_{1}^{0}(1235) \pi^{+}$; second row: $B^{+} \rightarrow b_{1}^{0}(1235) K^{+}$;

third row: $B^{0} \rightarrow b_{1}^{\mp}(1235) \pi^{ \pm}$; bottom row: $B^{0} \rightarrow b_{1}^{-}(1235) K^{+}$

$$
B^{+} \rightarrow\left(\eta_{X}\right)_{1.2-1.8} \mathrm{GeV} / c^{2} K^{+} \text {-preliminary }
$$

- B decays to a kaon and excited states of η, η^{\prime} ($b \rightarrow s$ penguin)
- Cands. for such excited $J^{P}=0^{-}$states $\eta(1295), \eta(1405), \eta(1475)$
- Dynamics of these quasi-2-body decays is a difficult theoretical problem \ldots why is $\mathcal{B}\left(B^{+} \rightarrow \eta^{\prime} K^{+}\right)$so large?
- Explanation thought to be in SM, but large uncertainties (higher-order corrections/charming-penguin contributions to factorization, SCET, exotic gluonium states ... ?)
- η_{X} 's reco'd through decays to $K_{S}^{0} K^{ \pm} \pi^{\mp}\left(\right.$ via $\left.K^{*} \bar{K}\right)$ and $\eta \pi^{+} \pi^{-}$ in invariant mass ranges $1.2-1.8,1.2-1.5 \mathrm{GeV} / c^{2}$
- Spectra here not well known J. Phys. G33, 1 (July 2006)—p591
- $f_{1}(1285)$ and $f_{1}(1420)\left(J^{P}=1^{+}\right)$, and $\phi(1680)\left(J^{P}=1^{-}\right)$, also found in these spectra-these states are also considered

$$
B^{+} \rightarrow\left(\eta_{X}\right)_{1.2-1.8 \mathrm{GeV} / c^{2}} K^{+} \text {-preliminary }
$$

- Two ML fits to $m_{E S}, \Delta E, \mathcal{F}$, invariant η_{X} mass, helicity angle
- First fit simultaneously extracts \mathcal{B}^{\prime} s for $B^{+} \rightarrow \eta_{X}\left(\rightarrow K_{S}^{0} K^{ \pm} \pi^{\mp}\right)$ K^{+}, where $\eta_{X}=\eta(1405), f_{1}(1420), \eta(1475), \phi(1680)$
- Second fit simultaneously extracts \mathcal{B}^{\prime} s for $B^{+} \rightarrow \eta_{X}\left(\rightarrow \eta \pi^{+} \pi^{-}\right)$ K^{+}, where $\eta_{X}=f_{1}(1285), \eta(1295), \eta(1405), f_{1}(1420)$
- $m_{E S}, \Delta E$ and \mathcal{F} discriminate signal versus background
- Invariant η_{X} mass and helicity angle discriminate between signal hypotheses (different masses, widths, spins)

$$
B^{+} \rightarrow\left(\eta_{X}\right)_{1.2-1.8 \mathrm{GeV} / c^{2}} K^{+} \text {-preliminary }
$$

$$
\mathcal{B}\left(\eta_{X} \rightarrow K^{*} \bar{K}\right) \times
$$

$$
\begin{array}{l|l}
\hline \mathcal{B}\left(B^{+} \rightarrow \eta(1475) K^{+}\right)=(13.8 \pm 1.8 \pm 1.0) \times 10^{-6} \dagger & 7.5 \sigma^{\dagger} \\
\mathcal{B}\left(B^{+} \rightarrow \eta(1405) K^{+}\right)<1.2 \times 10^{-6} & 90 \% \mathrm{CL} \\
\mathcal{B}\left(B^{+} \rightarrow f_{1}(1420) K^{+}\right)<4.1 \times 10^{-6} & 90 \% \mathrm{CL} \\
\mathcal{B}\left(B^{+} \rightarrow \phi(1680) K^{+}\right)<3.4 \times 10^{-6} & 90 \% \mathrm{CL}
\end{array}
$$

${ }^{\dagger}$: only if only S-wave contributions are signal, phase-space $K^{*} K K$ $\mathcal{B}\left(\eta_{X} \rightarrow \eta \pi \pi\right) \times$

$$
\begin{array}{l|}
\mathcal{B}\left(B^{+} \rightarrow \eta(1295) K^{+}\right)=(2.9 \pm 0.8 \pm 0.2) \times 10^{-6} \\
\mathcal{B}\left(B^{+} \rightarrow \eta(1405) K^{+}\right)<1.3 \times 10^{-6} \\
\mathcal{B}\left(B^{+} \rightarrow f_{1}(1285) K^{+}\right)<0.8 \times 10^{-6} \\
\mathcal{B}\left(B^{+} \rightarrow f_{1}(1420) K^{+}\right)<2.9 \times 10^{-6}
\end{array} \quad \begin{gathered}
3.5 \sigma \\
90 \% \mathrm{CL} \\
90 \% \mathrm{CL} \\
90 \% \mathrm{CL}
\end{gathered}
$$

- Same mechanism at work as for $B^{+} \rightarrow \eta^{\prime} K^{+}$?

Updated measurements—preliminary

- $B^{0} \rightarrow K^{0} \pi^{0} \mathcal{B}$ updated: $(10.34 \pm 0.66 \pm 0.58) \times 10^{-6}$
$-K^{0} \rightarrow K_{S}^{0}$ used for updated time-dependent CP asymmetry measurements, including $\sin 2 \beta_{\text {eff }}$ —see Josh Thompson's talk
- $B \rightarrow h \pi^{0} \mathcal{B}^{\prime}$ s updated—these modes can be used to constrain α, see Mark Allen's talk
$-\mathcal{B}\left(B^{0} \rightarrow \pi^{0} \pi^{0}\right)=(1.47 \pm 0.25 \pm 0.12) \times 10^{-6}$
$-\mathcal{B}\left(B^{+} \rightarrow \pi^{+} \pi^{0}\right)=\underline{(5.02 \pm 0.46 \pm 0.29) \times 10^{-6}}$
$-\mathcal{B}\left(B^{+} \rightarrow K^{+} \pi^{0}\right)=\left(\underline{13.6 \pm 0.6 \pm 0.7) \times 10^{-6}}\right.$
$\underline{\text { Lipkin ratio consistent with } 1 \text { : }}$

$$
\begin{aligned}
R_{L}=\frac{2 \Gamma\left(B^{+} \rightarrow K^{+} \pi^{0}\right)+2 \Gamma\left(B^{0} \rightarrow K^{0} \pi^{0}\right)}{\Gamma\left(B^{+} \rightarrow K^{0} \pi^{+}\right)+\Gamma\left(B^{0} \rightarrow K^{+} \pi^{-}\right)} & =1+\mathcal{O}\left(\frac{P_{E W}+T}{P}\right)^{2} \\
& =1.11 \pm 0.07
\end{aligned}
$$

Updated measurements

- $B \rightarrow h_{1} h_{2}\left(h_{1}=\eta, \eta^{\prime}, \omega ; h_{2}=K^{+}, \pi^{+}, K^{0}\right)$:

$$
\begin{aligned}
\mathcal{B}\left(B^{+} \rightarrow \eta \pi^{+}\right) & =(5.0 \pm 0.5 \pm 0.3) \times 10^{-6} \\
\mathcal{B}\left(B^{+} \rightarrow \eta K^{+}\right) & =(3.7 \pm 0.4 \pm 0.1) \times 10^{-6} \\
\mathcal{B}\left(B^{+} \rightarrow \eta^{\prime} \pi^{+}\right) & =(3.9 \pm 0.7 \pm 0.3) \times 10^{-6} \\
\mathcal{B}\left(B^{+} \rightarrow \eta^{\prime} K^{+}\right) & =(70.0 \pm 1.5 \pm 2.8) \times 10^{-6} \\
\mathcal{B}\left(B^{0} \rightarrow \eta^{\prime} K^{0}\right) & =(66.6 \pm 2.6 \pm 2.8) \times 10^{-6} \\
\mathcal{B}\left(B^{+} \rightarrow \omega \pi^{+}\right) & =(6.7 \pm 0.5 \pm 0.4) \times 10^{-6} \\
\mathcal{B}\left(B^{+} \rightarrow \omega K^{+}\right) & =(6.3 \pm 0.5 \pm 0.3) \times 10^{-6} \\
\mathcal{B}\left(B^{0} \rightarrow \omega K^{0}\right) & =(5.6 \pm 0.8 \pm 0.3) \times 10^{-6}
\end{aligned}
$$

- See Nicolas Arnaud's talk for asymmetry measurements
- Further charmless results presented by Silvano Tosi: $B \rightarrow p \bar{p} h$, $B \rightarrow \phi K^{*}$

Summary

- $B^{+} \rightarrow K^{+} K^{-} \pi^{+}$: first observation of charmless 3-body B meson decay to final state with even number of kaons
- $B \rightarrow A h\left(A=\right.$ axial-vector mesons $\left.b_{1}, a_{1} ; h=K, \pi\right)$: first observation of three modes, evidence of a further three modes
- First observation of G-parity suppression in B decays $\left(B^{0} \rightarrow b_{1}^{+}(1235) \pi^{-}\right)$
- Excess of events that could be $B^{+} \rightarrow \eta(1475) K^{+}, B^{+} \rightarrow \eta(1295)$ $K^{+} \ldots$ are these η, η^{\prime} excitations?
- Value of Lipkin ratio updated
- Several previous results updated with greater precision
- New/improved limits placed on numerous modes

Backup slides ...

Reminder of some winter conference results

- $\mathcal{B}\left(B^{+} \rightarrow \rho^{+} K^{0}\right)=\underline{(8.0 \pm 1.4 \pm 0.6) \times 10^{-6}} 7.9 \sigma$
- First observation of this pure penguin mode hep-ex/0702043useful for determining UT angle γ using U-spin and charmless $B^{+} \rightarrow M^{+} M^{0}$ decays Phys. Lett. B635, 330
- $\mathcal{B}\left(B^{0} \rightarrow K_{1}^{+}(1270) \pi^{-}\right)=(12.0 \pm 3.1 \pm 9.3)[<25.2] \times 10^{-6} 2.3 \sigma$ $\mathcal{B}\left(B^{0} \rightarrow K_{1}^{+}(1400) \pi^{-}\right)=(16.7 \pm 2.6 \pm 5.0)[<21.8] \times 10^{-6} 3.0 \sigma$
- Needed to pin down penguin amplitudes in order to extract α from $B^{0} \rightarrow a_{1}^{ \pm}(1260) \pi^{\mp}$

Topological variables

- $B \bar{B}$ pairs produced almost at rest in CM frame; $q \bar{q}$ pairs from continuum have considerable KE

Cut here, for example

- Can combine variables in Fisher discriminants, \mathcal{F}, and neural networks, \mathcal{N}

Kinematic variables

- Want to optimise resolution, take full advantage of available info, minimise correlations, allow for asymmetric nature of collider:

- $E_{\text {beam }}^{*}$ is expected energy of reco'd candidate using beam's 4-momentum and detected decay products' 3-momenta (in lab)
- ΔE has inferior resolution but since uses detected decay products' mass hypotheses is sensitive to particle mis-ID

Resonance variables

- For decays via intermediate state(s)
can utilise resonance invariant mass and helicity angle, θ_{H}

- Definition of θ_{H} depends on $\#$ of resonance daughters
- E.g., for two daughters, it's the polar angle in the resonance's rest frame of one of its daughters where the polar axis is anti-parallel to the receding B frame

The maximum likelihood (ML) method

- Probability density functions (PDFs), with parameters $\vec{\theta}$, are used to describe distributions of event variables \vec{x} (e.g. $m_{E S}, \Delta E, \mathcal{F}$, ...) for various species (e.g. signal, continuum background)
- ML technique used to determine values of $\vec{\theta}$ that maximise the probability of obtaining the observed measurements according to the pre-determined PDF forms (e.g. Gaussian)
- For the extended ML, the values of \vec{n} are also extracted where \vec{n} are the yields for each of our species
- The probability to maximise is given by the extended likelihood function...

The extended likelihood function

- The normal likelihood is the product of the PDFs for each individual candidate i (of which there are N), $\prod P\left(\vec{x}_{i} ; \vec{\theta}\right)$
- The extended likelihood function is given by $\mathcal{L}(\vec{n}, \vec{\theta})=$ Poisson factor \times normal likelihood function
- Omitting constants the function to maximise is

$$
\mathcal{L}^{\prime}(\vec{n}, \vec{\theta})=\exp \left(-\sum_{k=1}^{M} n_{k}\right) \prod_{i=1}^{N}\left(\sum_{j=1}^{M} n_{j}\left(\prod_{l=1}^{V} \mathcal{P}_{j}^{l}\left(x_{i}^{l} ; \vec{\theta}\right)\right)\right)
$$

- The PDF $P\left(\vec{x}_{i} ; \vec{\theta}\right)$, for a given measurement i, is the sum of the PDFs for each hypothesis (of which there are M)
- The PDF for each hypothesis, \mathcal{P}_{j}, is the product of the individual PDFs, \mathcal{P}^{l}, for each of the V discriminating event variables (assuming negligible correlation, which must be shown)

${ }_{\mathcal{S}}$ Plots

- Used to reconstruct a variable distribution for a particular species (e.g. signal) from the PDFs of other (fit) variables, \mathcal{P}
- sWeight for species of interest assigned to each event:

$$
\frac{\sum_{j=1}^{N_{S}} \mathbf{V}_{n j} \mathcal{P}_{j}}{\sum_{k=1}^{N_{S}} N_{k} \mathcal{P}_{k}}
$$

- N_{S} is $\#$ of species, \mathbf{V} is the covariant matrix from the fit, N_{k} is the yield for species k returned from the fit, subscript n refers to the species of interest
- Summing the sWeights over all events gives the species yield
- Bin each sWeighted event to reproduce (e.g. signal) distribution —i.e. signal $\mathcal{S} \mathcal{P}$ lot—of that variable (weight only the variable that we're $\mathcal{s}^{\mathcal{P}}$ lotting)

Dalitz plot analyses

- Note, amplitude-level Dalitz plot analyses are beginning to dominate charmless 3-body decays as datasets \uparrow (but none here!) (see Josh Thompson's presentation for a discussion of the $B^{0} \rightarrow K^{+} K^{-} K^{0}$ DP analysis)
- Structure in the DP gives info on resonance masses, widths, spins, relative phases, interference
- Model each contribution
to the DP as a separate amplitude with a complex coefficient (isobar model)

