Connecting B_d and B_s decays through QCD factorisation and flavour symmetries

Sébastien Descotes-Genon

Laboratoire de Physique Théorique CNRS & Université Paris-Sud 11, 91405 Orsay, France

July 20 2007

Sébastien Descotes-Genon (LPT-Orsay) $B_{d,s}$ decays through QCDF and flavour sym

Bunch of B_d and B_s , same underlying CKM mechanism in SM

Idea : Predict SM correlations between B_d and B_s decays and see whether these correlations are upset by New Physics

- 4 伺 ト 4 ヨ ト 4 ヨ ト

Bunch of B_d and B_s , same underlying CKM mechanism in SM

Idea : Predict SM correlations between B_d and B_s decays and see whether these correlations are upset by New Physics

QCD factorisation

- Good : $1/m_b, \alpha_s$ expansions with control of short-distance physics
- Bad : Some numerically significant long-distance $1/m_b$ corrections left out: weak annihilation, some spectator-quark interactions

Bunch of B_d and B_s , same underlying CKM mechanism in SM

Idea : Predict SM correlations between B_d and B_s decays and see whether these correlations are upset by New Physics

QCD factorisation

- Good : $1/m_b, \alpha_s$ expansions with control of short-distance physics
- Bad : Some numerically significant long-distance $1/m_b$ corrections left out: weak annihilation, some spectator-quark interactions

Flavour symmetries

- Good : Global symmetries of QCD, long- and short-distances
- Bad : Potentially large corrections, e.g. SU(3) symmetry O(30%)

くロット 本面 ア・ト ボリット 小田 マンクシ

Bunch of B_d and B_s , same underlying CKM mechanism in SM

Idea : Predict SM correlations between B_d and B_s decays and see whether these correlations are upset by New Physics

QCD factorisation

- Good : $1/m_b, \alpha_s$ expansions with control of short-distance physics
- Bad : Some numerically significant long-distance $1/m_b$ corrections left out: weak annihilation, some spectator-quark interactions

Flavour symmetries

- Good : Global symmetries of QCD, long- and short-distances
- Bad : Potentially large corrections, e.g. SU(3) symmetry O(30%)

Idea : Exploit both to extract SM correlations Illustration : $B_{d,s} \to K^0 \overline{K}^0$ and $B_{d,s} \to K^{*0} \overline{K}^{*0}$

SDG, J. Matias and J. Virto, PRL97:061801,2006 and arXiv:0705.0477 $_{\circ,\circ}$ Sébastien Descotes-Genon (LPT-Orsay) $B_{d,s}$ decays through QCDF and flavour sym 20/7/7 2 / 25

Penguin-mediated decays

-2 20/7/7 3 / 25

590

<ロ> (日) (日) (日) (日) (日)

$B_q \to K^0 \bar{K}^0$: interesting penguin decays

Conventional tree and penguin decomposition

$$\bar{A} \equiv A(\bar{B}_q \to K^0 \bar{K}^0) = V_{ub} V_{uq}^* T_K^q + V_{cb} V_{cq}^* P_K^q A \equiv A(B_q \to K^0 \bar{K}^0) = V_{ub}^* V_{uq} T_K^q + V_{cb}^* V_{cq} P_K^q$$

Only penguin diagrams no contribution from O_1 and O_2

Difference between tree and penguin from the u, c quark in loop

20/7/7 4 / 25

$B_q \to K^0 \bar{K}^0$: interesting penguin decays

Conventional tree and penguin decomposition

$$\bar{A} \equiv A(\bar{B}_q \to K^0 \bar{K}^0) = V_{ub} V_{uq}^* T_K^q + V_{cb} V_{cq}^* P_K^q A \equiv A(B_q \to K^0 \bar{K}^0) = V_{ub}^* V_{uq} T_K^q + V_{cb}^* V_{cq} P_K^q$$

Only penguin diagrams

no contribution from ${\it O}_1$ and ${\it O}_2$

Difference between tree and penguin from the u, c quark in loop

 $\Longrightarrow \Delta = T - P$ dominated by short-distance physics computed fairly accurately within QCDF

$$\begin{array}{lll} \Delta^d_{\mathcal{K}} &=& (1.09 \pm 0.43) \cdot 10^{-7} + i (-3.02 \pm 0.97) \cdot 10^{-7} \mathrm{GeV} \\ \Delta^s_{\mathcal{K}} &=& (1.03 \pm 0.41) \cdot 10^{-7} + i (-2.85 \pm 0.93) \cdot 10^{-7} \mathrm{GeV} \end{array}$$

20/7/7 4 / 25

$$B_{d,s}
ightarrow K^{*0} ar{K}^{*0}$$

◆ロト ◆課 ト ◆臣 ト ◆臣 ト ○臣 ○ のへで

$$B_{d,s} o K^{*0} ar{K}^{*0}$$

• $1/m_b$ hierarchy : QCDF potentially reliable for A_0 only

(ロト 4 同 ト 4 回 ト 4 回 ト 三 三 の 9 9 9

$$B_{d,s} o K^{*0} ar{K}^{*0}$$

- $1/m_b$ hierarchy : QCDF potentially reliable for A_0 only
- \bullet Longitudinal observables : Br, A_{\rm dir}, A_{\rm mix}
- Longitudinal amplitude described by

$$\begin{split} \bar{A}_0 &\equiv A(\bar{B}_q \to K^{*0}\bar{K}^{*0})^{\text{long}} = V_{ub}V_{uq}^*T_{K^*}^q + V_{cb}V_{cq}^*P_{K^*}^q \\ A_0 &\equiv A(B_q \to K^0\bar{K}^0)^{\text{long}} = V_{ub}^*V_{uq}T_{K^*}^q + V_{cb}^*V_{cq}P_{K^*}^q \end{split}$$

$$B_{d,s} o K^{*0} ar{K}^{*0}$$

- $1/m_b$ hierarchy : QCDF potentially reliable for A_0 only
- \bullet Longitudinal observables : Br, A_{\rm dir}, A_{\rm mix}
- Longitudinal amplitude described by

$$\begin{split} \bar{A}_0 &\equiv A(\bar{B}_q \to K^{*0}\bar{K}^{*0})^{\text{long}} = V_{ub}V_{uq}^*T_{K^*}^q + V_{cb}V_{cq}^*P_{K^*}^q \\ A_0 &\equiv A(B_q \to K^0\bar{K}^0)^{\text{long}} = V_{ub}^*V_{uq}T_{K^*}^q + V_{cb}^*V_{cq}P_{K^*}^q \end{split}$$

 $\Delta = T - P$ also accurate in QCDF for $B_{d,s} \to K^{*0} \bar{K}^{*0}$

$$\Delta_{K^*}^d = (1.48 \pm 0.57) \cdot 10^{-7} + i(-1.15 \pm 0.85) \cdot 10^{-7} \text{GeV}$$

$$\Delta_{K^*}^s = (1.29 \pm 0.50) \cdot 10^{-7} + i(-1.00 \pm 0.74) \cdot 10^{-7} \text{GeV}$$

CKM angles from penguin-mediated decays

Relations between T - P, decay observables and CKM matrix elements

- B_d and B_s decays differ through mixing angles
- $b \rightarrow d$ and $b \rightarrow s$ differ through CKM elements for tree and penguin

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

CKM angles from penguin-mediated decays

Relations between T - P, decay observables and CKM matrix elements

- B_d and B_s decays differ through mixing angles
- $b \rightarrow d$ and $b \rightarrow s$ differ through CKM elements for tree and penguin
- B_d decay through b
 ightarrow d, e.g. $B_d
 ightarrow K^{(*)0} ar{K}^{(*)0}$
- B_d decay through $b \rightarrow s$, e.g. $B_d \rightarrow \phi K_S$

$$\sin^2 \alpha = \frac{\widetilde{BR}}{2|\lambda_u^{(D)}|^2|\Delta|^2} \left(1 - \sqrt{1 - (\mathcal{A}_{dir})^2 - (\mathcal{A}_{mix})^2}\right)$$
$$\sin^2 \beta = \frac{\widetilde{BR}}{2|\lambda_c^{(D)}|^2|\Delta|^2} \left(1 - \sqrt{1 - (\mathcal{A}_{dir})^2 - (\mathcal{A}_{mix})^2}\right)$$

with $BR = BR \times$ trivial kinematic factor

・ロト ・四ト ・ヨト

CKM angles from penguin-mediated decays (2)

- B_s decay through b
 ightarrow s, e.g. $B_d
 ightarrow K^{(*)0} ar{K}^{*0}$
- B_s decay through b
 ightarrow d, e.g. $B_s
 ightarrow \phi K_S$

$$\sin^2 \beta_s = \frac{\widetilde{BR}}{2|\lambda_c^{(D)}|^2|\Delta|^2} \left(1 - \sqrt{1 - (\mathcal{A}_{\rm dir})^2 - (\mathcal{A}_{\rm mix})^2}\right)$$
$$\sin^2 (\beta_s + \gamma) = \frac{\widetilde{BR}}{2|\lambda_u^{(D)}|^2|\Delta|^2} \left(1 - \sqrt{1 - (\mathcal{A}_{\rm dir})^2 - (\mathcal{A}_{\rm mix})^2}\right)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のなべ

CKM angles from penguin-mediated decays (2)

- B_s decay through $b \to s$, e.g. $B_d \to K^{(*)0} \bar{K}^{*0}$
- B_s decay through $b \rightarrow d$, e.g. $B_s \rightarrow \phi K_S$

$$\sin^2 \beta_s = \frac{\widetilde{BR}}{2|\lambda_c^{(D)}|^2|\Delta|^2} \left(1 - \sqrt{1 - (\mathcal{A}_{\rm dir})^2 - (\mathcal{A}_{\rm mix})^2}\right) \\ \sin^2 (\beta_s + \gamma) = \frac{\widetilde{BR}}{2|\lambda_u^{(D)}|^2|\Delta|^2} \left(1 - \sqrt{1 - (\mathcal{A}_{\rm dir})^2 - (\mathcal{A}_{\rm mix})^2}\right)$$

For penguin-mediated decays,

- T P accurately known from QCDF (assumed in following) T - P, BR, A_{dir} , A_{mix} and UT sides \Longrightarrow angles
- If T P affected by charming penguins
 Probe their size by determining T P from the above relations

• 同下 < 三下 </p>

$B_{d,s} \to K^0 \bar{K}^0$

Sébastien Descotes-Genon (LPT-Orsay) $B_{d,s}$ decays through QCDF and flavour sym

20/7/7 8 / 25

◆□ ▶ ◆□ ▶ ◆目 ▶ ◆目 ▶ ◆□ ▶ ◆○ ♥

T - P: Hadronic parameters for $B_d \to K^0 \bar{K}^0$

To extract the hadronic parameters of this decay

- Unknowns |T|, |P/T| and arg(P/T)
- Observables $Br = (0.96 \pm 0.26) \cdot 10^{-6}$, A_{dir} (broad range), A_{mix}

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

T-P: Hadronic parameters for $B_d \to K^0 \bar{K}^0$

To extract the hadronic parameters of this decay

- Unknowns |T|, |P/T| and arg(P/T)
- Observables $Br = (0.96 \pm 0.26) \cdot 10^{-6}$, A_{dir} (broad range), T-P

 A_{mix} very hard to measure precisely, so we trade it for T - P

T-P: Hadronic parameters for $B_d \to K^0 \bar{K}^0$

To extract the hadronic parameters of this decay

- Unknowns |T|, |P/T| and arg(P/T)
- Observables $Br = (0.96 \pm 0.26) \cdot 10^{-6}$, A_{dir} (broad range), T-P

 A_{mix} very hard to measure precisely, so we trade it for T - P

Intersection : hadronic parameters up to a two-fold ambiguity

ヘロト 人間ト イヨト イヨト

 $B_d \to K^0 \bar{K}^0$ and $B_s \to K^0 \bar{K}^0$: U-spin

Final state $K^0 \bar{K}^0$ invariant \implies Most long-distance effects identical

20/7/7 10 / 25

 $B_d \to K^0 \overline{K}^0$ and $B_s \to K^0 \overline{K}^0$: U-spin

Final state $K^0 \bar{K}^0$ invariant \implies Most long-distance effects identical

U-spin breaking only in a few places :

• Difference in form factors $f = M_{B_s}^2 F_0^{\bar{B}_s \to K}(0) / [M_{B_d}^2 F_0^{B_d \to K}(0)]$

 $B_d \to K^0 \overline{K}^0$ and $B_s \to K^0 \overline{K}^0$: U-spin

Final state $K^0 \bar{K}^0$ invariant \implies Most long-distance effects identical

10 / 25

20/7/7

U-spin breaking only in a few places :

- Difference in form factors $f = M_{B_s}^2 F_0^{\bar{B}_s \to K}(0) / [M_{B_d}^2 F_0^{\bar{B}_d \to K}(0)]$
- Few processes sensitive to light quark (same topology for B_d and B_s)

 $B_d \to K^0 \overline{K}^0$ and $B_s \to K^0 \overline{K}^0$: U-spin

Final state $K^0 \overline{K}^0$ invariant \implies Most long-distance effects identical

U-spin breaking only in a few places :

- Difference in form factors $f = M_{B_s}^2 F_0^{\bar{B}_s \to K}(0) / [M_{B_d}^2 F_0^{\bar{B}_d \to K}(0)]$
- Few processes sensitive to light quark (same topology for B_d and B_s)

Hard-spectator scattering $(B_d \text{ and } B_s \text{ distribution amplitudes})$

Weak annihilation (gluon emission off light quark) $_{\rm oq}$

20/7/7

10 / 25

$$B_d \to K^0 \overline{K}^0$$
 and $B_s \to K^0 \overline{K}^0$: QCDF

In QCD factorisation

$$\begin{split} \frac{P^{s0}}{fP^{d0}} &= 1 + \frac{A_{KK}^d}{P^{d0}} \Big\{ \delta \alpha_4^c - \frac{\delta \alpha_{4EW}^c}{2} + \delta \beta_3^c + 2\delta \beta_4^c - \frac{\delta \beta_{3EW}^c}{2} - \delta \beta_{4EW}^c \Big\} \\ \frac{T^{s0}}{fT^{d0}} &= 1 + \frac{A_{KK}^d}{T^{d0}} \Big\{ \delta \alpha_4^u - \frac{\delta \alpha_{4EW}^u}{2} + \delta \beta_3^u + 2\delta \beta_4^u - \frac{\delta \beta_{3EW}^u}{2} - \delta \beta_{4EW}^u \Big\} \\ \text{with normalisation } A_{KK}^q &= M_{B_q}^2 F_0^{\bar{B}_q \to K}(0) f_K G_F / \sqrt{2} \end{split}$$

20/7/7 11 / 25

$$B_d \to K^0 \bar{K}^0$$
 and $B_s \to K^0 \bar{K}^0$: QCDF

In QCD factorisation

$$\begin{split} \frac{P^{s0}}{fP^{d0}} &= 1 + \frac{A_{KK}^d}{P^{d0}} \Big\{ \delta \alpha_4^c - \frac{\delta \alpha_{4EW}^c}{2} + \delta \beta_3^c + 2\delta \beta_4^c - \frac{\delta \beta_{3EW}^c}{2} - \delta \beta_{4EW}^c \Big\} \\ \frac{T^{s0}}{fT^{d0}} &= 1 + \frac{A_{KK}^d}{T^{d0}} \Big\{ \delta \alpha_4^u - \frac{\delta \alpha_{4EW}^u}{2} + \delta \beta_3^u + 2\delta \beta_4^u - \frac{\delta \beta_{3EW}^u}{2} - \delta \beta_{4EW}^u \Big\} \\ \text{with normalisation } A_{KK}^q &= M_{B_q}^2 F_0^{\bar{B}_q \to K}(0) f_K G_F / \sqrt{2} \end{split}$$

U-spin breaking in very few places

- factorisable ratio $f = M_{B_s}^2 F_0^{\bar{B}_s \to K}(0) / [M_{B_d}^2 F_0^{\bar{B}_d \to K}(0)]$
- $\delta \alpha_i = \alpha_i^p |_{B_s} \alpha_i^p |_{B_d}$: hard-spectator scattering
- $\delta\beta_i = \beta_i^p |_{B_{\epsilon}} \beta_i^p |_{B_{d}}$: weak annihilation
- \Longrightarrow Very small differences in agreement with U-spin arguments

QCDF bounds :
$$\left|\frac{P^{s0}}{fP^{d0}} - 1\right| \le 5\%$$
 and $\left|\frac{T^{s0}}{fT^{d0}} - 1\right| \le 5\%$

▲□ ▶ ▲ □ ▶ ▲ □ ▶ □ ● ● ● ●

$$B_d \rightarrow K^0 \overline{K}^0$$
 : Br, A_{dir} , $T^{d0} - P^{d0}$
 $\Longrightarrow B_d \rightarrow K^0 \overline{K}^0$: T^{d0} and P^{d0} (ratios)

20/7/7 12 / 25

▲ロト ▲園 ト ▲ 臣 ト ▲ 臣 ト ● ④ ● ●

$$B_d \rightarrow K^0 \overline{K}^0$$
 : Br, A_{dir} , $T^{d0} - P^{d0}$
 $\Longrightarrow B_d \rightarrow K^0 \overline{K}^0$: T^{d0} and P^{d0} (ratios)

A^{d0}_{dir}	$BR^{s0} \times 10^6$	A^{s0}_{dir} $ imes$ 10^2	A^{s0}_{mix} $ imes$ 10^2
-0.2	$18.4\pm6.5\pm3.6$	0.8 ± 0.3	-0.3 ± 0.8
-0.1	$18.2 \pm 6.4 \pm 3.6$	0.4 ± 0.3	-0.7 ± 0.7
0	$18.1 \pm 6.3 \pm 3.6$	0 ± 0.3	-0.8 ± 0.7
0.1	$18.2 \pm 6.4 \pm 3.6$	-0.4 ± 0.3	-0.7 ± 0.7
0.2	$18.4\pm6.5\pm3.6$	-0.8 ± 0.3	-0.3 ± 0.8

20/7/7 12 / 25

▲ロト ▲園 ト ▲ 臣 ト ▲ 臣 ト ● ④ ● ●

$$B_d \rightarrow K^0 \overline{K}^0$$
 : Br, A_{dir} , $T^{d0} - P^{d0}$
 $\Longrightarrow B_d \rightarrow K^0 \overline{K}^0$: T^{d0} and P^{d0} (ratios)

A ^{d0} _{dir}	$BR^{s0} imes 10^{6}$	A^{s0}_{dir} $ imes$ 10^2	A^{s0}_{mix} $ imes$ 10^2
-0.2	$18.4\pm6.5\pm3.6$	0.8 ± 0.3	-0.3 ± 0.8
-0.1	$18.2\pm6.4\pm3.6$	0.4 ± 0.3	-0.7 ± 0.7
0	$18.1 \pm 6.3 \pm 3.6$	0 ± 0.3	-0.8 ± 0.7
0.1	$18.2\pm6.4\pm3.6$	-0.4 ± 0.3	-0.7 ± 0.7
0.2	$18.4\pm6.5\pm3.6$	-0.8 ± 0.3	-0.3 ± 0.8

Also QCDF/U-spin connection for $B_d \to K^0 \bar{K}^0$ and $B_s \to K^+ K^-$ pengs. (but not for tree : QCDF estimate for $B_s \to K^+ K^-$)

= nar

$$B_d \rightarrow K^0 \overline{K}^0$$
 : Br, A_{dir} , $T^{d0} - P^{d0}$
 $\Longrightarrow B_d \rightarrow K^0 \overline{K}^0$: T^{d0} and P^{d0} (ratios)

A ^{d0} _{dir}	$BR^{s0} \times 10^{6}$	$A_{dir}^{s0} imes 10^2$	$A_{mix}^{s0} imes 10^2$
-0.2	$18.4\pm6.5\pm3.6$	0.8 ± 0.3	-0.3 ± 0.8
-0.1	$18.2 \pm 6.4 \pm 3.6$	0.4 ± 0.3	-0.7 ± 0.7
0	$18.1 \pm 6.3 \pm 3.6$	0 ± 0.3	-0.8 ± 0.7
0.1	$18.2 \pm 6.4 \pm 3.6$	-0.4 ± 0.3	-0.7 ± 0.7
0.2	$18.4\pm6.5\pm3.6$	-0.8 ± 0.3	-0.3 ± 0.8

Also QCDF/U-spin connection for $B_d \to K^0 \bar{K}^0$ and $B_s \to K^+ K^-$ pengs. (but not for tree : QCDF estimate for $B_s \to K^+ K^-$)

$$Br(B_s \to K^+ K^-) = (20 \pm 8 \pm 4 \pm 2) \cdot 10^{-6}$$

$$Br(B_s \to K^0 \bar{K}^0) = (18 \pm 6 \pm 4 \pm 2) \cdot 10^{-6}$$

CDF measurement [Beauty 2006]: $BR^{s\pm} = (24.4 \pm 1.4 \pm 4.6) \times 10^{-6}$ Sébastien Descotes-Genon (LPT-Orsay) $B_{d,s}$ decays through QCDF and flavour sym20/7/712 / 25

$B_d ightarrow K^{*0} ar{K}^{*0}$ vs $B_s ightarrow K^{*0} ar{K}^{*0}$

20/7/7 13 / 25

・ロト ・回 ・ ・ ヨ ・ ・ ヨ ・ うくぐ

ϕ_s from \mathcal{A}_{mix} by bounding T/P

$$\mathcal{A}_{\mathrm{mix}}^{\mathrm{long}}(B_{\mathfrak{s}} \to K^{*0}\bar{K}^{*0}) \simeq \sin\phi_{\mathfrak{s}} + 2 \left| \frac{\lambda_{u}^{(\mathfrak{s})}}{\lambda_{c}^{(\mathfrak{s})}} \right| \mathrm{Re}\left(\frac{T_{K^{*}K^{*}}^{\mathfrak{s}}}{P_{K^{*}K^{*}}^{\mathfrak{s}}} \right) \sin\gamma\cos\phi_{\mathfrak{s}} + \cdots$$

20/7/7 14 / 25

・ロト ・回 ・ ・ ヨ ・ ・ ヨ ・ うくぐ

ϕ_s from $\mathcal{A}_{\mathrm{mix}}$ by bounding T/P

$$\mathcal{A}_{\mathrm{mix}}^{\mathrm{long}}(B_{s} \to K^{*0}\bar{K}^{*0}) \simeq \sin\phi_{s} + 2 \left| \frac{\lambda_{u}^{(s)}}{\lambda_{c}^{(s)}} \right| \mathrm{Re}\left(\frac{T_{K^{*}K^{*}}^{s}}{P_{K^{*}K^{*}}^{s}} \right) \sin\gamma\cos\phi_{s} + \cdots$$

both pieces O(λ²)
|λ_u^(s)/λ_c^(s)| = 0.044 small but Re(T/P) ? Re (T/P) = Re (P+Δ/P) = 1 + Re (Δ/P)

20/7/7 14 / 25

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

ϕ_s from $\mathcal{A}_{\mathrm{mix}}$ by bounding T/P

$$\mathcal{A}_{\mathrm{mix}}^{\mathrm{long}}(B_{\mathfrak{s}} \to K^{*0}\bar{K}^{*0}) \simeq \sin\phi_{\mathfrak{s}} + 2 \left| \frac{\lambda_{u}^{(\mathfrak{s})}}{\lambda_{c}^{(\mathfrak{s})}} \right| \mathrm{Re}\left(\frac{T_{K^{*}K^{*}}^{\mathfrak{s}}}{P_{K^{*}K^{*}}^{\mathfrak{s}}}\right) \sin\gamma\cos\phi_{\mathfrak{s}} + \cdots$$

$$P^{s}_{K^{*}K^{*}} = f P^{d}_{K^{*}}(1+\delta^{P}_{K^{*}}) \quad T^{s}_{K^{*}K^{*}} = f T^{d}_{K^{*}}(1+\delta^{T}_{K^{*}}) \quad f = \frac{m^{2}_{B_{s}}A^{B_{s} \to K^{*}}_{0}}{m^{2}_{B}A^{B \to K^{*}}_{0}}$$

U-spin expectations and QCDF computations : $|\delta^{P}_{\kappa^*}| \leq 0.12$ $|\delta^{T}_{\kappa^*}| \leq 0.15$

Relating B_d and B_s in SM

$$P^{s}_{K^{*}K^{*}} = f P^{d}_{K^{*}}(1+\delta^{P}_{K^{*}}) \quad T^{s}_{K^{*}K^{*}} = f T^{d}_{K^{*}}(1+\delta^{T}_{K^{*}}) \quad f = \frac{m^{2}_{B_{s}}A^{B_{s} \to K^{*}}_{0}}{m^{2}_{B}A^{B \to K^{*}}_{0}}$$

U-spin expectations and QCDF computations : $|\delta_{\kappa^*}^{P}| \leq 0.12$ $|\delta_{\kappa^*}^{T}| \leq 0.15$

$$egin{array}{lll} B_d o K^{*0}ar{K}^{*0} : Br, \ A_{dir}, \ T^d_{K^*} - P^d_{K^*} \ \Longrightarrow B_d o K^{*0}ar{K}^{*0} : \ T^s_{K^{*0}} ext{ and } P^s_{K^{*0}} ext{ sobservables} \end{array}$$

Sébastien Descotes-Genon (LPT-Orsay) B_{d,s} decays through QCDF and flavour sym

Relating B_d and B_s in SM and beyond

Assuming
$$\phi_s^{SM} = 2\beta_s = -2^\circ$$
, $56^\circ \le \gamma \le 68^\circ$,
and $BR^{\text{long}}(B_d \to K^{*0}\bar{K}^{*0}) \gtrsim 5 \times 10^{-7}$

$$egin{aligned} & \left(BR^{\mathrm{long}}(B_{s}
ightarrow K^{*0} ar{K}^{*0}) / BR^{\mathrm{long}}(B_{d}
ightarrow K^{*0} ar{K}^{*0})
ight)_{SM} = 17 \pm 6 \ & \mathcal{A}^{\mathrm{long}}_{\mathrm{dir}}(B_{s}
ightarrow K^{*0} ar{K}^{*0})_{SM} = 0.000 \pm 0.014 \ & \mathcal{A}^{\mathrm{long}}_{\mathrm{mix}}(B_{s}
ightarrow K^{*0} ar{K}^{*0})_{SM} = 0.004 \pm 0.018 \end{aligned}$$

Relating B_d and B_s in SM and beyond

Assuming
$$\phi_s^{SM} = 2\beta_s = -2^\circ$$
, $56^\circ \le \gamma \le 68^\circ$,
and $BR^{\text{long}}(B_d \to K^{*0}\bar{K}^{*0}) \gtrsim 5 \times 10^{-7}$

$$\begin{split} & \left(BR^{\text{long}}(B_s \to K^{*0}\bar{K}^{*0}) / BR^{\text{long}}(B_d \to K^{*0}\bar{K}^{*0}) \right)_{SM} = 17 \pm 6 \\ & \mathcal{A}^{\text{long}}_{\text{dir}}(B_s \to K^{*0}\bar{K}^{*0})_{SM} = 0.000 \pm 0.014 \\ & \mathcal{A}^{\text{long}}_{\text{mix}}(B_s \to K^{*0}\bar{K}^{*0})_{SM} = 0.004 \pm 0.018 \end{split}$$

Conclusions (1)

Penguin-mediated decays studied through QCD fact. and flavour sym.

- T P accurately known in QCDF and related to observables
- Test of charming penguins or determination of CKM angles

For $B_d
ightarrow K^0 ar{K}^0$ and $B_s
ightarrow K ar{K}$

- $Br(B_d)$ (measured) and A_{dir}^{d0} (loose range, expected ≥ 0) enough to fix tree and penguin
- Large and correlated asymmetries in $B_d o K^0 ar{K}^0$ and $B_s o K^+ K^-$
- Improved determination of U-spin ratios and BRs

$$Br(B_s \to K^+ K^-)_{SM} = (20 \pm 8 \pm 4 \pm 2) \cdot 10^{-6}$$
(OK with CDF)
$$Br(B_s \to K^0 \bar{K}^0)_{SM} = (18 \pm 6 \pm 4 \pm 2) \cdot 10^{-6}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ →□ ◆○

Conclusions (2)

For $B_d o K^{*0} ar K^{*0}$ and $B_s o K^{*0} ar K^{*0}$ (longitudinal)

- Determination of ϕ_s from $\mathcal{A}_{\mathrm{mix}}$
- Correlations between Brs
- If $BR^{
 m long}(B_d o K^{*0} ar{K}^{*0}) \gtrsim 5 imes 10^{-7}$, good determination of P

$$\begin{pmatrix} \frac{BR^{\text{long}}(B_{s} \to K^{*0}\bar{K}^{*0})}{BR^{\text{long}}(B_{d} \to K^{*0}\bar{K}^{*0})} \end{pmatrix}_{SM} = 17 \pm 6 \\ \mathcal{A}^{\text{long}}_{\text{dir}}(B_{s} \to K^{*0}\bar{K}^{*0})_{SM} = 0.000 \pm 0.014 \\ \mathcal{A}^{\text{long}}_{\text{mix}}(B_{s} \to K^{*0}\bar{K}^{*0})_{SM} = 0.004 \pm 0.018$$

くロット 本面 ア・ト ボリット 小田 マンクシ

Conclusions (2)

For $B_d o K^{*0} ar K^{*0}$ and $B_s o K^{*0} ar K^{*0}$ (longitudinal)

- Determination of ϕ_s from $\mathcal{A}_{\mathrm{mix}}$
- Correlations between Brs
- If $BR^{
 m long}(B_d o K^{*0} ar{K}^{*0}) \gtrsim 5 imes 10^{-7}$, good determination of P

$$\begin{pmatrix} \frac{BR^{\text{long}}(B_{s} \to K^{*0}\bar{K}^{*0})}{BR^{\text{long}}(B_{d} \to K^{*0}\bar{K}^{*0})} \end{pmatrix}_{SM} = 17 \pm 6 \\ \mathcal{A}^{\text{long}}_{\text{dir}}(B_{s} \to K^{*0}\bar{K}^{*0})_{SM} = 0.000 \pm 0.014 \\ \mathcal{A}^{\text{long}}_{\text{mix}}(B_{s} \to K^{*0}\bar{K}^{*0})_{SM} = 0.004 \pm 0.018$$

Experiment : More accurate asymmetries ? More B_s observables ?

Theory : Improved
$$f = \frac{M_{B_s}^2 F_0^{\bar{B}_s \to \kappa}(0)}{M_{B_d}^2 F_0^{\bar{B}_d \to \kappa}(0)}$$
 ? Other modes ?

20/7/7 18 / 25

Backup

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Two-fold degeneracy in (T^{d0}, P^{d0})

Two solutions for $(T^{s\pm}, P^{s\pm})$:

- Similar $|T^{s\pm}|$ and $|P^{s\pm}/T^{s\pm}|$
- Solution used : $20^{\circ} \leq \arg(P^{s\pm}/T^{s\pm}) \leq 180^{\circ}$
- 2nd sol : $-150^\circ \leq \arg(P^{s\pm}/T^{s\pm}) \leq 20^\circ$

Two-fold degeneracy in (T^{d0}, P^{d0})

Two solutions for $(T^{s\pm}, P^{s\pm})$:

- Similar $|T^{s\pm}|$ and $|P^{s\pm}/T^{s\pm}|$
- Solution used : $20^{\circ} \leq \arg(P^{s\pm}/T^{s\pm}) \leq 180^{\circ}$
- 2nd sol : $-150^\circ \leq \arg(P^{s\pm}/T^{s\pm}) \leq 20^\circ$

$$\begin{array}{l} \mathsf{HFAG \ on} \ B_d \to \pi^+ \pi^- \ \mathsf{data} \\ BR = (5.0 \pm 0.4) \times 10^{-6} \\ A_{dir} = -0.33 \pm 0.11 \\ A_{mix} = 0.49 \pm 0.12 \end{array} \right\} \Longrightarrow \begin{cases} |T_{\pi\pi}^{d\pm}| = (5.48 \pm 0.42) \times 10^{-6} \\ |P_{\pi\pi}^{d\pm}/T_{\pi\pi}^{d\pm}| = 0.13 \pm 0.05 \\ \operatorname{arg} \left(P_{\pi\pi}^{d\pm}/T_{\pi\pi}^{d\pm} \right) = (131 \pm 18)^{\circ} \end{cases}$$

Two-fold degeneracy in (T^{d0}, P^{d0})

Two solutions for $(T^{s\pm}, P^{s\pm})$:

- Similar $|T^{s\pm}|$ and $|P^{s\pm}/T^{s\pm}|$
- Solution used : $20^{\circ} \leq \arg(P^{s\pm}/T^{s\pm}) \leq 180^{\circ}$
- 2nd sol : $-150^\circ \leq \arg({\it P^{s\pm}}/{\it T^{s\pm}}) \leq 20^\circ$

$$\begin{array}{l} \mathsf{HFAG \ on} \ B_d \to \pi^+ \pi^- \ \mathsf{data} \\ BR = (5.0 \pm 0.4) \times 10^{-6} \\ A_{dir} = -0.33 \pm 0.11 \\ A_{mix} = 0.49 \pm 0.12 \end{array} \right\} \Longrightarrow \begin{cases} |T_{\pi\pi}^{d\pm}| = (5.48 \pm 0.42) \times 10^{-6} \\ |P_{\pi\pi}^{d\pm}/T_{\pi\pi}^{d\pm}| = 0.13 \pm 0.05 \\ \operatorname{arg} \left(P_{\pi\pi}^{d\pm}/T_{\pi\pi}^{d\pm} \right) = (131 \pm 18)^{\circ} \end{cases}$$

Approximate U-spin $B_d \to \pi^+\pi^-/B_s \to K^+K^-$

- Discard 2nd sol: $\arg(P^{s\pm}/T^{s\pm})$ should be positive
- Favours sol used with $A_{dir}^{d0} > 0$

Comparing QCDF and our approach

Main uncertainties from long-distance (IR-divergent) terms

• QCD factorisation : Source of substantial errors to model

Observable	QCDF default set	QCDF S4
$BR^{s0} imes 10^{6}$	$24.7_{-2.4-9.2-2.9-9.8}^{+2.5+13.7+2.6+25.6}$	38.3
$A^{s0}_{dir} imes 10^2$	$0.9^{+0.2+0.2+0.1+0.2}_{-0.2-0.2-0.1-0.3}$	0.6
$BR^{s\pm}$ $ imes$ 10 ⁶	$22.7_{-3.2-8.4-2.0-9.1}^{+3.5+12.7+2.0+24.1}$	36.1
$A_{dir}^{s\pm}$ $ imes$ 10 ²	$4.0^{+1.0+2.0+0.5+10.4}_{-1.0-2.3-0.5-11.3}$	-4.7

Beneke and Neubert, Nucl. Phys. B675:333-415,2003

• Our approach : Extracted from other flavour-related decays

A^{d0}_{dir}	$BR^{s0} imes 10^6$	A^{s0}_{dir} $ imes$ 10^2	$BR^{s\pm} imes 10^{6}$	$A^{s\pm}_{dir}$ $ imes$ 10^2
-0.2	$18.4 \pm 6.5 \pm 3.6$	0.8 ± 0.3	$21.9\pm7.9\pm4.3$	24.3 ± 18.4
-0.1	$18.2 \pm 6.4 \pm 3.6$	0.4 ± 0.3	$19.6 \pm 7.3 \pm 4.2$	$\textbf{35.7} \pm \textbf{14.4}$
0	$18.1 \pm 6.3 \pm 3.6$	0 ± 0.3	$17.8 \pm 6.0 \pm 3.7$	$\textbf{37.0} \pm \textbf{12.3}$
0.1	$18.2 \pm 6.4 \pm 3.6$	-0.4 ± 0.3	$16.4 \pm 5.7 \pm 3.3$	29.7 ± 19.9
0.2	$18.4 \pm 6.5 \pm 3.6$	-0.8 ± 0.3	$15.4\pm5.6\pm3.1$	$\textbf{6.8} \pm \textbf{28.9}$

 $A_{dir}^{d0} = -0.40 \pm 0.41 \pm 0.06$ [BaBar] $BR^{s\pm} = (24.4 \pm 1.4 \pm 4.6) \times 10^{-6}$ [CDF]

Sébastien Descotes-Genon (LPT-Orsay) B_{d,s} decays through QCDF and flavour sym

20/7/7 21 / 25

Comparing flavour symmetries and our approach

Quantitative statement about U-spin breaking

• Flavour symmetries : guesstimated fudge factors

$$\begin{split} \xi &= \left| \frac{P^{s\pm}}{T^{s\pm}} \times \frac{T_{\pi\pi}^{d\pm}}{P_{\pi\pi}^{d\pm}} \right| = 1.0 \pm 0.2 \quad \text{(assumed)} \\ R_c &= \left| \frac{T^{s\pm}}{T_{\pi\pi}^{d\pm}} \right| = 1.76 \pm 0.17 \quad \text{(sum rule)} \\ 4.2 \cdot 10^{-6} \leq BR^{s\pm} \leq 61.9 \cdot 10^{-6} \end{split}$$

S. Baek, D. London, J. Matias, J. Virto, JHEP 0602:027,2006

• Our approach : Estimate through QCDF analysis of U-spin relations

$$\xi = 0.8 \pm 0.4$$
 (computed)
 $R_c = 2.0 \pm 0.8$ (computed)
 $BR^{s\pm} = (20 \pm 8 \pm 4 \pm 2) \cdot 10^{-6}$

 $B_d \to K^0 \bar{K}^0$ and $B_s \to K^+ K^-$

 $\begin{array}{l} U\text{-spin and isospin} \\ B_s \to K^+ K^- \text{ penguin related to } P^{d0} \\ \Longrightarrow \text{Most long-distance effects} \\ \text{ are the same} \\ \hline \text{QCDF bound} : \left| \frac{P^{s\pm}}{fP^{d0}} - 1 \right| \leq 5\% \end{array}$

20/7/7 23 / 25

 $B_d \to K^0 \bar{K}^0$ and $B_s \to K^+ K^-$

 $\begin{array}{l} U\text{-spin and isospin} \\ B_s \to K^+ K^- \text{ penguin related to } P^{d0} \\ \Longrightarrow \text{Most long-distance effects} \\ \text{ are the same} \\ \\ \begin{array}{l} \mathsf{QCDF \ bound} : \left| \frac{P^{s\pm}}{fP^{d0}} - 1 \right| \leq 5\% \end{array}$

No such simple relation for the tree part Some related contributions but O_1 tree contribution to $B_s \to K^+K^-$ unmatched

• QCDF estimate of O_1 term in $T^{s\pm}$: $\left| \frac{T^{s\pm}}{A_{KK}^s \bar{\alpha}_1} - 1 - \frac{T^{d0}}{A_{KK}^d \bar{\alpha}_1} \right| \le 5\%$ • Cabibbo suppressed in $B_s \to K^+ K^-$

20/7/7 23 / 25

Hadronic parameters for $B_s \rightarrow K^+ K^-$

Take same form factors as QCDF, and CKM factors $\lambda_p^{(q)} = V_{pb}V_{pq}^*$ $\lambda_u^{(d)} = 0.0038 \cdot e^{-i\gamma} \quad \lambda_u^{(s)} = 0.00088 \cdot e^{-i\gamma}$ $\lambda_c^{(d)} = -0.0094 \qquad \lambda_c^{(s)} = 0.04$ and $\gamma = 62^{\circ}$

$$\begin{array}{l} B_d \to K^0 \bar{K}^0 : Br, A_{dir}, T^{d0} - P^{d0} \\ \Longrightarrow B_d \to K^0 \bar{K}^0 : T^{d0} \text{ and } P^{d0} \\ \Longrightarrow B_s \to K^+ K^- : T^{s\pm} \text{ (QCDF) and } P^{s\pm} \text{ (QCDF+flavour bound)} \end{array}$$

A ^{d0} _{dir}	$ T^{s\pm} imes 10^{6}$	$ P^{s\pm}/T^{s\pm} $	$arg(P^{s\pm}/T^{s\pm})$
-0.2	12.7 ± 2.8	0.09 ± 0.03	$(45\pm33)^\circ$
-0.1	12.1 ± 2.7	0.10 ± 0.03	$(78\pm27)^\circ$
0	11.5 ± 2.6	0.10 ± 0.03	$(105\pm15)^\circ$
0.1	11.1 ± 2.6	0.11 ± 0.03	$(137\pm27)^\circ$
0.2	10.8 ± 2.6	0.11 ± 0.03	$(180\pm10)^\circ$

20/7/7 24 / 25

 $(P^{s\pm}, T^{s\pm})$ yields U-spin breaking between $\bar{B}_s o K^+ K^-$ and $\bar{B}_d o \pi^+ \pi^-$

$$\xi = \left| \frac{P^{s\pm}}{T^{s\pm}} \frac{T^{d\pm}_{\pi\pi}}{P^{d\pm}_{\pi\pi}} \right| = 0.8 \pm 0.4$$

 $(P^{s\pm}, T^{s\pm})$ yields U-spin breaking between $\bar{B}_s o K^+ K^-$ and $\bar{B}_d o \pi^+ \pi^-$

$$\xi = \left| \frac{P^{s\pm}}{T^{s\pm}} \frac{T^{d\pm}_{\pi\pi}}{P^{d\pm}_{\pi\pi}} \right| = 0.8 \pm 0.4$$

A ^{d0} _{dir}	$BR^{s\pm}$ $ imes$ 10 ⁶	$A^{s\pm}_{dir}~ imes 10^2$	$A^{s\pm}_{mix} imes 10^2$
-0.2	$21.9\pm7.9\pm4.3$	24.3 ± 18.4	24.7 ± 15.5
-0.1	$19.6\pm7.3\pm4.2$	$\textbf{35.7} \pm \textbf{14.4}$	7.7 ± 15.7
0	$17.8\pm6.0\pm3.7$	$\textbf{37.0} \pm \textbf{12.3}$	-9.3 ± 10.6
0.1	$16.4\pm5.7\pm3.3$	29.7 ± 19.9	-26.3 ± 15.6
0.2	$15.4\pm5.6\pm3.1$	$\textbf{6.8} \pm \textbf{28.9}$	-40.2 ± 14.6

20/7/7 25 / 25

◆□ > ◆□ > ◆豆 > ◆豆 > ・豆 ・ 今へ⊙

 $(P^{s\pm}, T^{s\pm})$ yields U-spin breaking between $\bar{B}_s o K^+ K^-$ and $\bar{B}_d o \pi^+ \pi^-$

$$\xi = \left| rac{P^{s\pm}}{T^{s\pm}} rac{T^{d\pm}_{\pi\pi}}{P^{d\pm}_{\pi\pi}}
ight| = 0.8 \pm 0.4$$

A ^{d0} _{dir}	$BR^{s\pm}$ $ imes$ 10 ⁶	$A^{s\pm}_{dir}~ imes 10^2$	$A^{s\pm}_{mix}$ $ imes$ 10 ²
-0.2	$21.9\pm7.9\pm4.3$	24.3 ± 18.4	24.7 ± 15.5
-0.1	$19.6\pm7.3\pm4.2$	$\textbf{35.7} \pm \textbf{14.4}$	7.7 ± 15.7
0	$17.8\pm6.0\pm3.7$	$\textbf{37.0} \pm \textbf{12.3}$	-9.3 ± 10.6
0.1	$16.4\pm5.7\pm3.3$	$\textbf{29.7} \pm \textbf{19.9}$	-26.3 ± 15.6
0.2	$15.4\pm5.6\pm3.1$	$\textbf{6.8} \pm \textbf{28.9}$	-40.2 ± 14.6

- U-spin on $B_d \to \pi^+\pi^-$: $A_{mix}^{s\pm} < 0$ and $\arg \frac{P^{s\pm}}{T^{s\pm}} \simeq 130^\circ \Longrightarrow A_{dir}^{d0} \ge 0$
- QCDF alone : $A_{dir}^{d0} \simeq 20\%$
- Babar : $A_{dir}^{d0} = -0.40 \pm 0.41 \pm 0.06$ [hep-ex/0608036] Belle : $A_{dir}^{d0} = 0.57_{-0.72}^{+0.65} \pm 0.13$ [hep-ex/0608049]

□ > < E > < E > E - のへの

 $(P^{s\pm}, T^{s\pm})$ yields U-spin breaking between $\bar{B}_s o K^+ K^-$ and $\bar{B}_d o \pi^+ \pi^-$

$$\xi = \left| rac{P^{s\pm}}{T^{s\pm}} rac{T^{d\pm}_{\pi\pi}}{P^{d\pm}_{\pi\pi}}
ight| = 0.8 \pm 0.4$$

A ^{d0} _{dir}	$BR^{s\pm} imes 10^{6}$	$A^{s\pm}_{dir}$ $ imes$ 10^2	$A^{s\pm}_{mix}$ $ imes$ 10 ²
-0.2	$21.9\pm7.9\pm4.3$	24.3 ± 18.4	24.7 ± 15.5
-0.1	$19.6\pm7.3\pm4.2$	$\textbf{35.7} \pm \textbf{14.4}$	7.7 ± 15.7
0	$17.8\pm6.0\pm3.7$	$\textbf{37.0} \pm \textbf{12.3}$	-9.3 ± 10.6
0.1	$16.4\pm5.7\pm3.3$	29.7 ± 19.9	-26.3 ± 15.6
0.2	$15.4\pm5.6\pm3.1$	$\textbf{6.8} \pm \textbf{28.9}$	-40.2 ± 14.6

- U-spin on $B_d \to \pi^+\pi^-$: $A_{mix}^{s\pm} < 0$ and $\arg \frac{P^{s\pm}}{T^{s\pm}} \simeq 130^\circ \Longrightarrow A_{dir}^{d0} \ge 0$
- QCDF alone : $A_{dir}^{d0} \simeq 20\%$
- Babar : $A_{dir}^{d0} = -0.40 \pm 0.41 \pm 0.06$ [hep-ex/0608036] Belle : $A_{dir}^{d0} = 0.57^{+0.65}_{-0.72} \pm 0.13$ [hep-ex/0608049]

CDF measurement [Beauty 2006]: $BR^{s\pm} = (24.4 \pm 1.4 \pm 4.6) \times 10^{-6}$