

Rare B_s and D Decays With the DØ Detector Arthur Maciel

(Centro Brasileiro de Pesquisas Físicas – Rio, Brazil)

— For the DØ Collaboration —

Outline

- Two FCNC decay searches with the DØ detector are reported (EPS'07 abstract n.390)
 - * $B_s \longrightarrow \mu^+ \mu^ b \longrightarrow s$ (FCNC in the d-sector)
 - * $D^{\pm} \to \pi^{\pm} \mu^{+} \mu^{-}$ $c \to u$ (FCNC in the u-sector)
- Looking for sizeable BR enhancements, above SM expectations, due to new physics (*).
- In both cases, currently the most stringent limits.
 - (*) reminder: (FCNC)
 - Forbidden at tree level in the SM, must proceed via higher order WIs
 - New physics potentially competitive with SM

Tevatron RunII

Int.Lum	fb^{-1}
Delivered	3
DØ recorded	2.6
DØ analyses	2

Collider Run II Integrated Luminosity

TeV now delivering $\sim 40 pb^{-1}/\text{week}$

The DØ Detector – TeV RunII

Central magnetic tracking volume is a RunII addition: Si(4 double layers) Sci-Fi(8 double layers) SCond Solenoid (2T)

Compact $(R \approx 80cm)$

Special B-strengths:

- Muon-ID, muon triggers
- single- μ 70% pure at L1
- Arthur Maciel, EPS'2007(July 19–25)

Wide angle coverage:

- Muon chambers; $|\eta| < 2.0$
- Tracking volume; $|\eta| < 3.0$

3

The DØ Tracking Volume

Purely Leptonic B^0 Decays

S.M. predictions							
source	decay	BR					
A.Buras, PLB 566, 115(2003)	$B_s \to \mu^+ \mu^-$	$(3.42 \pm 0.54) \times 10^{-9}$					
	$B_d o \mu^+ \mu^-$	$(1.00 \pm 0.14) \times 10^{-10}$	(*)				
errors dominated by non-perturbative hadronic uncertainties							

(*) suppressed by an additional factor $|V_{ts}/V_{td}|^2 \sim 0.04$

Any signal within current experimental sensitivity indicates new physics...

$D_s \neq \mu \mu$ missery with D_s				
when	where	Int.Lum.	BR < (95% CL)	
Fall 2004	PRL 94, 071802 (2005)	$240 p b^{-1}$	$5.0 imes 10^{-7}$	
March 2005	4733-CONF	$300 p b^{-1}$	$3.7 imes 10^{-7}$	
March 2006	5009-CONF	$700 p b^{-1}$	$2.3 imes 10^{-7}$	
March 2007	5344-CONF	$2000 p b^{-1}$	this talk	

$B_s \rightarrow u^+ u^-$ history with DØ

Beyond The Standard Model

(see e.g. J.Ellis, K.A.Olive, V.C.Spanos; hep-ph/0504196)

(Ex.I) Multiple Higgs Bosons (some low mass)

SUSY/MSSM

- neutral Higgs bosons
- and high $\tan\beta$

BR enhancements possible by up to 3 orders of mag.

(Ex.II) Non-standard Particles with Large Couplings to SM

SUSY/RPV

- at tree level,
- irrespective of $\tan\beta$
- but depending on coupling consts

 \implies improvements in BR upper limits will

constrain parameter space of such models

Arthur Maciel, EPS'2007(July 19–25)

6

 \implies COMBINED

- Runs IIa and IIb treated as two different and independent analyses
- Data collection uses a set of dimuon triggers

• DØ's 1st result using "RunIIb" (June'06) data

- tracking aided by extra silicon "Layer Ø"

- A two-step discrimination against other dimuon sources
 - (1) a pre-selection based on track quality, dimuon kinematics and isolation, pointing angle and impact parameters, dimuon vertex χ^2 and decay length significance
 - (2) further background reduction by using a discriminator LHR
- The signal region is kept blinded throughout the selection process

Arthur Maciel, EPS'2007(July 19–25)

DØ

Resulting Mass Distributions

- Run IIa
 - observe one event
 - expected backgnds
 - * 0.8 ± 0.2 events (exponential interpolation)
- Run IIb
 - observe two events
 - expected backgnds
 - * 1.5 ± 0.5 events (combined linear and exponential interpolations)

Normalization Channel

- BR upper limit obtained w.r.to channel $B^{\pm} \to J/\psi \ K^{\pm}$
- same dimuon selection is applied to $J/\psi \rightarrow \mu^+\mu^-$
- efficiencies and uncertainties largely cancel
- additional K selection efficiencies determined from MC and data cross checks/corrections

9

BR Limit Calculation

$$\mathcal{B}(B_s \to \mu^+ \mu^-) = \frac{N_{limit}^{upper}}{N_B \pm} \times \begin{bmatrix} \frac{\epsilon_{\mu}^K}{\mu^+ \mu^-} \\ \epsilon_{\mu}^{B_s} \\ \mu^+ \mu^- \end{bmatrix}_{MC} \times \begin{bmatrix} \frac{b \to B^{\pm}}{b \to B_s} \end{bmatrix}_{PDG} \times \begin{bmatrix} \mathcal{B}(B^{\pm} \to J/\psi \ K^{\pm}) \\ \times \\ \mathcal{B}(J/\psi \to \mu^+ \mu^-) \end{bmatrix}_{PDG} = \frac{\mathcal{B}(J/\psi \to \mu^+ \mu^-)}{\mathcal{B}(J/\psi \to \mu^+ \mu^-)} \end{bmatrix}_{PDG}$$

conservatively assumes no contribution from $B_d \to \mu^+ \mu^-$ in search window

- Limits obtained in a (flat prior) Bayesian approach (see T.Hebbeker, L3 note 2633, Feb.2001)
- Assuming data counts follow Poisson probabilities
- All uncertainties on input fragmentation, BR's and observed $N(B^{\pm})$ are propagated into an overall detection efficiency assumed gaussian.
- Uncertainties in \mathcal{B} are dominated by background expectation estimates and the $b \rightarrow u/s$ fragmentation ratio (15%)

Results

Data sample	${\cal B}(B_s o \mu^+ \mu^-) <$	
\sim Int.Lum. (fb^{-1})	90% CL	95% CL
RunIIa (1.3)	$7.9 imes10^{-8}$	$9.5 imes10^{-8}$
RunIIb (0.6)	$3.1 imes10^{-7}$	$4.0 imes10^{-7}$
Combined (2)	$7.5 imes10^{-8}$	$9.3 imes10^{-8}$

- Note: early RunIIb had problems with newly installed tracking front end hardware (firmware, timing, threshold tuning)
 - some recoverable, some not (2 months)
 - these problems now understood and fixed
- Higher IIb efficiencies and lower uncertainties are to be recovered with the recent completion of the data reprocessing

FCNC Charm Decays

- Example diagrams for $D^+_{(s)} o \pi^+ \mu^+ \mu^-$ and/or $D^+_s o K^+ \mu^+ \mu^-$
- Non-resonant penguin and box diagrams proceed via $\sum d, s, b$ internal loops and lead to strong GIM suppression
- DØ: search for $D^+ \to \pi^+ \mu^+ \mu^-$ in the continuum region of the dimuon invariant mass

FCNC D-Decays

- General strategy:
 - **Step-1**; benchmark the resonant regions in $\mu^+\mu^-\pi$ spectrum. In particular, $D_s^+ \to \pi^+\mu^+\mu^-$ can only proceed via resonant mode $\Rightarrow \mathcal{BR}$ factorizes $(D_s \to \phi\pi) \times (\phi \to \mu\mu) \Rightarrow$ used as normalization
 - **Step-2**; search for excess $D \to \pi \mu \mu$ in continuum regions of spectrum.
 - Current status: $(\sim 1 \ fb^{-1})$ Observed (65±11) candidates * $D_s^{\pm} \rightarrow \phi \pi^{\pm}, \ \phi \rightarrow \mu^+ \mu^- \Rightarrow$
 - Plus, evidence of the decay * $D^{\pm} \rightarrow \phi(\mu^{+}\mu^{-}) \pi^{\pm}$ (26 ± 9)
 - * 3.1 σ above background

(from likelihood fits w/ and w/out the D^+)

FCNC D-Decays (cont.)

• Step-1

$$\begin{aligned} \mathcal{B}(D^+ \to \phi \pi^+ \to \pi^+ \mu^+ \mu^-) &= (1.8 \pm 0.7 \pm 0.5) \times 10^{-6} \\ \text{and can be compared with} \\ \mathcal{B}(D^+ \to \phi \pi^+) \times (\phi \to \mu^+ \mu^-) & (1.86 \pm 0.26) \times 10^{-6} \\ \text{CLEO} - \text{PRL 95, 221802(2005)} & (2.7 \pm \frac{3.6}{1.8} \pm 0.2) \times 10^{-6} \end{aligned}$$

- **Step-2** Search for continuum production of $D^+ \to \pi^+ \mu^+ \mu^-$
 - * $m(\mu^+\mu^-) < 1.8 \ GeV/c^2$ and $\pm 3\sigma$ excluded around $m(\phi)$
 - * Selection reoptimized for 90% CL (Punzi: physics/0308063)
 - * Expected backgrounds determined from sidebands

Results

• BR upper limit obtained w.r.to normalizing channel $D_s^+ \to \phi \pi^+ \to \pi^+ \mu^+ \mu^-$

$$\frac{\mathcal{B}(D^+ \to \pi^+ \mu^+ \mu^-)}{\mathcal{B}(D_s^+ \to \phi \pi^+) \times (\phi \to \mu^+ \mu^-)} < 0.46 \quad (90\% CL)$$

• using the central values for the normalizing fractions,

$$\mathcal{B}(D^+ \to \pi^+ \mu^+ \mu^-) < 4.7 \times 10^{-6} \ (90\% CL)$$

previous searches: FOCUS(2003) < 8.8×10^{-6} CLEO(2005) < 7.4×10^{-6} BaBar(2006) < 24.4×10^{-6} ($e^+e^-\pi^+$)

• This analysis currently under update: (with 30% more data) with a ~ $4\sigma D^+ \rightarrow \phi \pi^+ \rightarrow \pi^+ \mu^+ \mu^-$ signal now used as normalization to reduce uncertainties, notably in the D^+/D_s production fractions.

Conclusion

• Two new rare decay BR upper limits set by $D\emptyset$

$$\mathcal{BR}(B_s^o \to \mu^+ \mu^-) < 9.3 \times 10^{-8} \ (95\% CL)$$

$$\mathcal{BR}(D^+ \to \pi^+ \mu^+ \mu^-) < 4.7 \times 10^{-6} \ (90\% CL)$$

• In the $B_s \to \mu^+ \mu^-$ case, the current CDF limit of $\mathcal{BR}(B_s^o \to \mu^+ \mu^-) < 1.0 \times 10^{-7} (95\% CL, 780 fb^{-1})$

has been combined with that from DØ to give

 $\mathcal{BR}(B_s^o \to \mu^+ \mu^-) < 5.8 \times 10^{-8} \ (95\% CL)$

Tevatron Combined (thanks Matt Herndon)