

 K_{ℓ_3} and K_{ℓ_2} decays: V_{us}

Federico Mescia Laboratori Nazionali di Frascati

on behalf of the FlaviaNet Kaon Working Group

V_{us} and the CKM Unitarity:

- Quark/Lepton Universality $\Rightarrow |V_{us}|^2 + |V_{ud}|^2 + |V_{ub}|^2 1 = 0.9990(8)$
- Lepton Universality \Rightarrow K_{e2}

Results from the FlaviaNet KWG

EPS-HEP 2007, July 19-25, 2007 - Manchester

$$|V_{ud}|^2 + |V_{us}|^2 + |V_{us}|^2 = 1$$

Universality of Weak coupling - $G_F = (g_w/M_w)^2$

Standard Model

Susy, Little Higgs, Extra Dimesion

$$|V_{ud}|^{2} + |V_{us}|^{2} + |V_{us}|^{2} = 1$$
Universality of Weak
coupling - G_F = (g_w/M_w)²

Standard Model

Susy, Little Higgs, Extra Dimesion

 $u = \frac{\ell}{V_{ug}} + \frac{\ell}{V$

• significantly different from the Unitarity Triangle Test (overal normalisation arbitrary) **G_F – Universality**

$$\boldsymbol{G}_{CKM}^{2} \equiv \boldsymbol{G}_{F}^{2} \times \left(\left| \boldsymbol{V}_{ud} \right|^{2} + \left| \boldsymbol{V}_{us} \right|^{2} \right) \neq \boldsymbol{G}_{F}^{2}$$

$$rightarrow G_{\tau} = 1.1678(26) \times 10^{-5} \text{ GeV}^{-2}$$

$$\alpha + M_w + s_w$$

[e.w. precision tests]

$$G_{e.w.} = 1.1655(12) \times 10^{-5} \text{ GeV}^{-2}$$

 $\int_{W_{us}}^{u} \int_{W_{us}}^{\ell} G_{CKM} = 1.1658(04) \times 10^{-5} \text{ GeV}^{-2}$

 V_{us} below 1% makes CKM unitarity competitive to Electro-Weak Precision Test

• V_{us} below 1% makes the CKM unitarity test competetive to Electro-Weak Precision Test

• <u>In the spirit of the HFAG for B physics</u>, a joint experimental and theory working group has been set up for Kaon physics:

 Measurements (BR's + Lifetime's + Form Factors) and Theory inputs have not trivial correlations, which is crucial to take into account!!! V_{us} determination and the CKM Unitarity

Averages from the FlaviaNet KWG

<u>talk by Spadaro</u>

• Vector Weak Universality \Rightarrow

 $V_{us}f_{+}(0) = 0.21668(45) \Longrightarrow V_{us}^{Kl3} = 0.2254(13) \Longrightarrow |V_{ud}|^{2} + |V_{us}|^{2} + |V_{ub}|^{2} = 0.9990(8)$

• Vector Lepton Universality \Rightarrow $G_F^{\mu} / G_F^e = 1.0042(50) \quad [\Rightarrow 0.5\%]$

<u>Mind</u>

- **Theory:** QCD uncertainties need much better control!!
- Experiment: poor agreement on Form Factors measurements

suggestion for the new generation of Lattice and P326 experiments

 $\Gamma(K_{l3(\gamma)}) = \frac{C_{K}^{2} G_{F}^{2} M_{K}^{5}}{192\pi^{3}} S_{EW} |V_{us}|^{2} |f_{+}^{K^{0}\pi^{-}}(0)|^{2} I_{Kl}(\lambda) (1 + 2\Delta_{K}^{SU(2)} + 2\Delta_{Kl}^{EM})$

 V_{us} from $K_{\ell 3}$ decays

with $K = K^+$, K^0 ; l = e, μ and $C_K^2 = 1/2$ for K^+ , 1 for K^0

Inputs from experiment:

 $\Gamma(K_{l^{3}(\gamma)})$ Branching ratios with well determined treatment of radiative decays; lifetimes

 $I_{Kl}(\lambda)$

Phase space integral: λ s parameterize form factor dependence on *t*:

 K_{e^3} : only λ_+ (or $\lambda_+' \lambda_+''$)

 $K_{\mu3}$: need λ_+ and λ_0

Several new results in the last 2 yearsKTeVKLOENA48ISTRA+E865

Evolution of K^{\pm} BRs

talk by De Lucia & Goudzovski

 V_{us} from $K_{\ell 3}$ decays

$$\Gamma(K_{l3(\gamma)}) = \frac{C_{K}^{2} G_{F}^{2} M_{K}^{3}}{192\pi^{3}} S_{EW} |V_{us}|^{2} |f_{+}^{K^{0}\pi^{-}}(0)|^{2} I_{Kl}(\lambda) (1 + 2\Delta_{K}^{SU(2)} + 2\Delta_{Kl}^{EM})$$

with $K = K^+$, K^0 ; l = e, μ and $C_K^2 = 1/2$ for K^+ , 1 for K^0

Many Theoretical Approaches

• First estimate by LR in 1984 => $f_+(0)=0.961(8)$

• Present values agree with each other at 1-2% $[f_+(0)\sim0.96-0.98]$

 Next progress rely on Lattice approach

• Many lattice estimates already available, typically at $m_{\pi} \ge 500$ MeV <=>

large chiral uncertainties

 \bullet Lattice systematically smaller than $\chi \text{PT-}$ inspired values

• Encouraging result from UKQCD-RBC: N_F=2+1, DWF, m_{π} \ge 300 MeV $f_+(0)=0.961(5) \implies \sigma \sim 0.5\%$

 $M_{Z'} > 1.2 \text{ TeV}$

 $|V_{ud}|^2 + |V_{us}|^2 = 0.9990(8)$

 f_{K}/f_{π} =1.189(7) from HPQCD'07 | V_{us}/V_{ud} |=0.2323(15) from Kl2

E.g.:

This is a highly non-trivial constraint for NP models...

 $f_{+}(0)=0.961(5)$ from UKQCD/RBC'07 $|V_{us}|=0.2254(13)$ from KI3

 f_{K}/f_{π} =1.189(7) from HPQCD'07 | V_{us}/V_{ud} |=0.2323(15) from Kl2

Reminder:

Recent unquenched Lattice results are still under scrutiny from other groups

 $B(K \rightarrow ev) / B(K \rightarrow \mu v)$

Masiero, Paradisi & Petronzio *large tan*β & LFV

Key Point: scalar operators enhanced by elicity suppression

promising in view of future lattice and exp. data improved determination of hadronic parameters useful to test/constraint NP models on

 $\frac{B(K \to lv)}{B(\pi \to lv)} \times \frac{B(n \to plv)}{B(K \to \pi lv)} \propto \left(\frac{f_K}{f_{\pi}} \frac{1}{f_{+}(0)}\right)^2$

Lepton Universality Test

The most popular/exciting NP scenario which could affect c.c. semileptonic decays is the possibility of LFV effects modifying the μ/e ratio in K₁₂

 $\Rightarrow B(K \to ev) / B(K \to \mu v)$

$$R_{K} = (1 + \Delta r_{K}^{e-\mu}) = \frac{\sum_{i} K \to e\nu_{i}}{\sum_{i} K \to \mu\nu_{i}} \simeq \frac{\Gamma_{SM}(K \to e\nu_{e}) + \Gamma(K \to e\nu_{\tau})}{\Gamma_{SM}(K \to \mu\nu_{\mu})}$$

$$\Delta r_{K\,SUSY}^{e-\mu} \simeq \left(\frac{m_{K}^{4}}{M_{H^{\pm}}^{4}}\right) \left(\frac{m_{\tau}^{2}}{m_{e}^{2}}\right) |\Delta_{R}^{31}|^{2} \tan^{6}\beta \approx 10^{-2}$$
Masiero Paradisi Petronzio '06

key ingredeints for visible effects in SUSY:

- Large tan β , $M_H < 1 TeV$
- Large LFV slepton minxings, $\delta_{3j} \sim O(1)$, $(m_{SUSY} \ge 1 \text{TeV})$

Limit on LFV in H⁺ coupling \Rightarrow

 $B(K \to ev) / B(K \to \mu v)$

Lessons from Kaon Physics

1. V_{us} at 0.1% precision not impossible

⇒ significant SM test competitive with EWPT

2. To reach this goal a collaboration between theorist and experimentalist is essential

- \Rightarrow e.m corrections
- \Rightarrow strong *SU(2) corrections*
- \Rightarrow chiral extrapolation of lattice results
- \Rightarrow correlated data analysis

