

Vus determination from KLOE

E. De Lucía

(for the KLOE Collaboration)

with $K \in \{K^+, K^0\}$; $l \in \{e, \mu\}$, and: C_{ν}^{2} 1/2 for K⁺, 1 for K⁰

Inputs from theory:

 S_{EW}

Universal short distance EW correction (1.0232)

 $f_{\pm}^{K^0\pi(0)}$ Hadronic matrix element at zero momentum transfer (t=0)

 $\Delta_{K}^{SU(2)}$ Form factor correction for strong SU(2) breaking

 Δ_{KI}^{EM} Long distance EM effects

Inputs from experiment:

- $\Gamma(K_{l3(\gamma)})$ Branching ratios with well determined treatment of radiative decays; lifetimes
- Phase space integral: λs $I_{Kl}(\lambda)$ parameterize form factor dependence on t: K_{e3} : only λ_{+} (or $\lambda_{+}' \lambda_{+}''$)

 $K_{\mu3}$: need λ_+ and λ_0

KLOE is measuring all relevant Inputs for charged and neutral kaons: BR's, lifetimes, ff's European Physical Society HEP 2007 - 19-25 July 2007 E. De Lucía

<u>K_</u> BRS, lifetime and Ke3 ff slopes

KLOE PLB 632 (2006) Absolute BRs: K_L decays tagged by K_S $\rightarrow \pi^{+}\pi^{-}$ Set $\sum_{x} BR(K_{L} \rightarrow x, \tau_{L}) = 1$ and solve for BRs and τ_{L}

BR⁽⁰⁾(*Ke*3) = 0.4049(21) BR⁽⁰⁾(*Kµ*3) = 0.2726(16) at $\tau_{L}^{(0)} = 51.54$ ns BR⁽⁰⁾($3\pi^{0}$) = 0.2018(24) BR⁽⁰⁾($\pi^{+}\pi^{-}\pi^{0}$) = 0.1276(15)

KLOE PLB 626 (2005)

Lifetime: fitting the time depence of $K_L \rightarrow 3\pi^0$ decays High, uniform reconstruction efficiency over $0.4\lambda_L$ Independent of BR measurement

 $\tau_L = 50.92(30) \text{ ns}$ cf. Vosburgh '72: $\tau_L = 51.54(44) \text{ ns}$

K_Le3 form factor slopes: K_L decays tagged by K_s $\rightarrow \pi^+\pi^-$ background rejection and PID using TOF Agreement between results from quadratic and pole parametrization

$$\lambda'_{+} \times 10^{3}$$
 $\lambda''_{+} \times 10^{3}$
25.5 ± 1.8 1.4 ± 0.8 Correlation -0.95

uniopune + rigsun soulty HEP 2007 - 19-25 July 2007

<u>Unique to KLOE: $BR(K_{s} \rightarrow \pi ev)$ </u>

BR($K_S \rightarrow \pi ev$) = 7.046(91) × 10⁻⁴ (total error dominated by statistics) *European Physical Society HEP 2007 – 19-25 July 2007*

80

<u>K</u> <u>µ3 form factor slopes</u>

 $\lambda'_{+} \times 10^{3}$

 25.6 ± 1.8

- \diamond K_L decays tagged by $K_s \rightarrow \pi^+ \pi^-$
- \diamond preselection cutting on $E_{miss} p_{miss}$
- \Rightarrow background rejection of ππ,πππ and πev from kinematics
- ♦ further reduction of Ke3 background with TOF
 & NN output (based on E/p and cluster shape)
 ♦ π/μ ID with TOF is difficult at low energies

 λ_0 slope by fitting the E_v distribution and combined fit with K_Le3 results for λ'_+ and λ''_+

 $\lambda''_{+} \times 10^{3}$

 1.5 ± 0.8

KLOE preliminary

E. De Lucía

European Physical Society HEP 2007 - 19-25 July 2007

 $\lambda_0 \times 10^3$

 15.4 ± 2.1

Ke3 - vector form factor

- * Experiments are sensitive to both linear and quadratic terms of power exp.
- Results are in agreement with the pole parametrization as expected from dispersion relations

кµз – vector and scalar form factors

- * Experiments cannot determine the quadratic coefficient λ_0'' of $f_0(t)$
- Input from theory is needed to write f(t) with one parameter
- ♦ Use recent parametrization based on dispersion relations from Stern & coll.
 > shift on λ_0' of about $-2x10^{-3}$ PLB 638 (2006)
 > impact on phase space integral $I_K(\lambda)$

Crucial for QCD tests with Callan-Treiman (see F. Mescia talk)
 E. De Lucía
 European Physical Society HEP 2007 - 19-25 July 2007

Measurement of $BR(K^{\pm}l3)$

(dominating contribution to the final uncertainty)

KLOE	
final	

Absolute BR($K^{\pm}e^{3}$) and BR($K^{\pm}\mu^{3}$) measurements

Separate measurements for each charge Tagged by $K \rightarrow \mu\nu$ and $K \rightarrow \pi\pi^0$: 8 measurements total

 $\begin{array}{l} \mathsf{BR}^{(0)}(K^{\pm}e3) = 4.965(53)\% \\ \mathsf{BR}^{(0)}(K^{\pm}\mu3) = 3.233(39)\% \end{array}$

at $\tau_{\pm}^{(0)}$ = 12.384 ns, with *d* BR/BR = -0.45 $d\tau_{\pm}/\tau_{\pm}$

Poor consistency of PDG average with measurements spread

 $\delta\tau/\tau \sim 0.2\% \rightarrow \delta V_{\rm us}/V_{\rm us} \sim 0.1\% \qquad \qquad \delta\tau/\tau \sim 0.8\% \rightarrow \delta V_{\rm us}/V_{\rm us} \sim 0.4\%$

 \diamond Use $K_{\mu 2}$ tagged decay vertices in drift chamber and two different methods

to evaluate the proper time *t** (cross-check systematic effects)

 $|V_{\mu\varsigma}| f_+(0)$ from KLOE data

 $|V_{us}|f_{+}(0)$

Average: $|V_{us}| f_{+}(0) = 0.21556(59) \qquad \chi^2/ndf = 6.1/4 (19\%)$

 $BR(K^{\pm} \rightarrow \mu v(\gamma))$ and $V_{\mu s}/V_{\mu d}$

Marciano '04

$$\frac{\Gamma(K^{\pm} \to \mu^{\pm} \nu(\gamma))}{\Gamma(\pi^{\pm} \to \mu^{\pm} \nu(\gamma))} = \frac{|V_{us}|^2 f_K^2 m_K (1 - m_{\mu}^2 / m_K^2)^2}{|V_{ud}|^2 f_{\pi}^2 m_\pi (1 - m_{\mu}^2 / m_{\pi}^2)^2} \times 0.9930(35)$$
Uncertainty from SD virtual corrections

HP/UKQCD '07 arXiv:0706.1726 $f_K f_{\pi} = 1.189(7)$ $N_f = (2+1)_{stag}$

Cancellation of lattice-scale uncertainties

KLOE PLB 636 (2006) **BR**($K^+ \rightarrow \mu^+ \nu(\gamma)$) = 0.6366(17) Uses $K^- \rightarrow \mu^- \nu$ to tag 2-body *K* decays Counts $K^+ \rightarrow \mu^+ \nu$ from decay-momentum spectrum

Use KLOE BR($K^+ \rightarrow \mu^+ \nu(\gamma)$) instead of value from BR/lifetime fit: Error slightly larger, but radiative contribution under better control

$V_{us}/V_{ud} = 0.2323(15)$

For New Physics search related to this channel refer to T. Spadaro talkE. De LucíaEuropean Physical Society HEP 2007 - 19-25 July 2007

 $f_{+}(0)$ from UKQCD/RBC '06 $|V_{us}| = 0.2243(13)$ from KLOE *Kl*3

Fit results, no constraint:

$$V_{ud}$$
 = 0.97371(26)
 V_{us} = 0.2252(10)
 χ^2/ndf = 0.85/1 (36%)

Fit results, unitarity constraint:

 $V_{ud} = 0.97405(17)$ $V_{us} = 0.2263(7)$ $\chi^2/ndf = 3.8/2 (14.6\%)$

Agreement with unitarity 1.5σ

 $\underline{BR}(\mathcal{K}^{+} \rightarrow \pi^{+} \pi^{\circ}(\gamma))$

This new measurement is crucial in order to perform the fit to K[±] BR's:

- \diamond only KI3 and KI3/K $\pi 2$ measured recently
- \diamond KI3 and K\pi2 are strongly correlated
- \diamond the available measurement dates back to Chiang '72
 - $BR(K^{\pm} \rightarrow \pi^{\pm} \pi^{0}) = (21, 18 \pm 0.28)\% \quad \Delta BR/BR = 1, 3x10^{-2}$
- \diamond but no radiative corrections & no correlations available

This decay enters in the normalization of BR(K±I3) by NA48, ISTRA+, E865 used for Vus

- The absolute $BR(K_{\pi 2})$ measurement
- * Normalization sample is given by $K^- \rightarrow \mu^- \nu \text{ tag}$
- Number of K[±]→π[±]π⁰ decays from the fit of the distribution of the momentum of the charged decay particle in the kaon rest frame assuming the pion mass (p*)
- Selection efficiency related to Drift Chamber information only and measured directly on DATA using the K[±]→X[±]π⁰ control sample identified from π⁰ →γγ decay vertex

 $\frac{BR(\kappa^{+} \rightarrow \pi^{+} \pi^{\circ}(\gamma)):Preliminary result}{Preliminary result}$

- Signal count from the fit the p* distribution with three contributions:
 - $* \mu v$ peak from DATA control sample selected using calorimetric information only
 - * $\pi\pi^0$ peak from DATA control sample sele using calorimetric information only
 - * 3-body decays from MC
- Normalize to the number of tags
- Correct for the selection efficiency

KLOE preliminary

$$\mathsf{BR}(\mathsf{K}^{+} \to \pi^{+} \pi^{0}(\gamma)) = (20.658 \pm 0.065_{\mathsf{stat}} \pm 0.090_{\mathsf{syst}})$$

PDG fit '06

BR(K[±]
$$\rightarrow \pi^{\pm}\pi^{0}$$
) = (20,92 ± 0.12)% Δ BR/BR = 5,7x10⁻³
CHIANG '72

 $BR(K^{\pm} \rightarrow \pi^{\pm} \pi^{0}) = (21, 18 \pm 0.28)\% \quad \Delta BR/BR = 1$

control sample selected
formation only
A control sample selected
formation only
m MC
ber of tags
on efficiency
$$658 \pm 0.065_{stat} \pm 0.090_{syst})\%$$
$$0.216$$
$$0.214$$
$$0.212$$
$$0.212$$
$$0.210$$
$$0.212$$
$$0.210$$
$$0.212$$
$$0.210$$
$$0.210$$
$$0.212$$
$$0.210$$
$$0.210$$
$$0.210$$
$$0.210$$
$$0.210$$
$$0.210$$
$$0.210$$
$$0.210$$
$$0.210$$
$$0.210$$
$$0.210$$
$$0.210$$
$$0.210$$
$$0.210$$
$$0.210$$
$$0.210$$
$$0.210$$
$$0.210$$
$$0.210$$
$$0.208$$
$$0.208$$
$$0.208$$
$$0.208$$
$$0.209$$

E. De Lucía

 $\frac{BR(\kappa^{+} \rightarrow \pi^{+} \pi^{\circ}(\gamma)):Preliminary\ result}{}$

Impact of the new measurement wrt PDG06 fit value on the BR(Kl3) measurements normalized to $K\pi^2$ decays and comparison with absolute BR(Kl3) measurements from KLOE

E. De Lucía

<u>Summary & conclusions</u>

KLOE is playing a fundamental role in the determination of V_{us} being the only experiment able to measure all the parameters needed for its determination and using both K[±] and K_{L,S}

Kaon decay analyses published in 2006

- \checkmark absolute BR's for 4 main K₁ channels and τ_1
- \checkmark form factor slopes for K₁ e3 decays
- \checkmark BR's and charge asymmetry for K_se3
- ✓ precise measurement of $\Gamma(\pi^+\pi^-(\gamma))/\Gamma(\pi^0\pi^0)$
- \checkmark absolute BR for K⁺ $\rightarrow \mu\nu(\gamma)$ decay

Results announced at previous conferences

- \checkmark preliminary result on form factor slopes for K₁µ3 decays
- \checkmark final results on absolute BR's of K[±]₁₃ decays
- \checkmark K[±] lifetime from both decay length and timing measurements

Preliminary measurement announced at this conference

 \checkmark absolute BR's of K⁺ $\rightarrow \pi^{+}\pi^{0}(\gamma)$

... and more to come: $K_{s\mu}3$ decays, ff slopes for K[±] (I3) decays and analyze the whole data set

♦ Present accuracy on $|V_{us}| f_+(0)$ is <0.3% using KLOE results only European Physical Society HEP 2007 - 19-25 July 2007 E. De Lucía 15