

A. Oyanguren (IFIC – Valencia)

EPS 007 Manchester (UK)

More than 1 billion of charm hadrons!

EPS 007

A. Oyanguren

2

007: Successful missions

- Leptonic decays ($D_s \rightarrow \mu\nu$, Published PRL'07)
- Semileptonic decays (D⁰ \rightarrow K⁻e⁺v, accepted by PRD)
- D branching fractions (D⁰ \rightarrow K⁻ π^+ , submitted to PRL)
- Dalitz analyses (D⁰ \rightarrow K⁺K⁻ π^{0} , accepted by PRD)
- Charm baryons (Ω_c , accepted by PRL)
- Charm spectroscopy (T. Schroeder, Strong Interactions-II)
- $D^{0}-\overline{D}^{0}$ mixing (J. Coleman, this session)

50

0.05

0.1

0.15

0.2

0.25

0.3

 $\Delta M (GeV/c^2)$

0.3

B (D_s $\rightarrow \mu\nu$) = (0.674 ± 0.083 ± 0.026 ± 0.066)%

Normalized to

 $D^*_s \rightarrow D_s \gamma$, $D_s \rightarrow \phi \pi$

$D^0 \rightarrow K^-e^+\nu$

arXiv:0704.0020, accepted by PRD

- \otimes Untagged analysis D^{*+} \rightarrow D⁰ π^+ , D⁰ \rightarrow K⁻e⁺ ν → $\Delta m = mD^{*+}-mD^{0}$
- * Kinematic fit: $q^2 = (p_D p_K)^2 = (p_e + p_v)^2$
- **The second seco** q² distribution
- \otimes Normalized to D⁰ \rightarrow K⁻ π^+

EPS 007

A. Oyanguren

6

$B(D^0 \rightarrow K^-\pi^+)$

arXiv:0704.2080, submitted to PRL

(The world (average) is

not enough)

$D^0 \rightarrow K^+ K^- \pi^0$ Dalitz analysis

arXiv:0704.3593, accepted by PRD

- \star Allow to extract \mathbf{r}_{D} and $\delta_{D} \rightarrow key \ for \ \gamma_{CKM}$
- * Give light on the scalar sector (κ ?)
 - * Amplitude analysis:

Fit relative amplitudes, phases

-Large contribution from K*(892)+ (45%), K*(892) $^{\rm -}$ (16%) and $\phi(1020)$ (19%)

 $-f_0/a_0(980)$ (6-7%):

- K π (S-wave) (16%): LASS amplitude, consistency with no κ (800)

(Live and

let die)

Ω_c decay

hep-ex/0703030, accepted by PRL

* Charm baryons little explored* BaBar has exclusively reconstructed:

$$\begin{split} \Omega_{\rm c} & \to \Omega^{\text{-}} \pi^{\text{+}}, \\ \Omega^{\text{-}} \pi^{\text{+}} \pi^{0}, \\ \Omega^{\text{-}} \pi^{\text{+}} \pi^{\text{-}} \pi^{\text{+}}, \\ \Xi^{\text{-}} \mathsf{K}^{\text{-}} \pi^{\text{+}} \pi^{\text{+}} \end{split}$$

$$\frac{\mathcal{B}(\Omega_c^0 \to \Omega^- \pi^+ \pi^0)}{\mathcal{B}(\Omega_c^0 \to \Omega^- \pi^+)} = 1.27 \pm 0.31 \pm 0.11$$
$$\frac{\mathcal{B}(\Omega_c^0 \to \Omega^- \pi^+ \pi^+ \pi^-)}{\mathcal{B}(\Omega_c^0 \to \Omega^- \pi^+)} = 0.28 \pm 0.09 \pm 0.01$$
$$\frac{\mathcal{B}(\Omega_c^0 \to \Xi^- K^- \pi^+ \pi^+)}{\mathcal{B}(\Omega_c^0 \to \Omega^- \pi^+)} = 0.46 \pm 0.13 \pm 0.03$$

EPS 007

A. Oyanguren

(Nobody does it better)

Ω_c production

***** First evidence of Ω_c production in B decays:

EPS 007

A. Oyanguren

Summary

- ${\bf O} \; D_s \rightarrow \mu \nu$: ${\bf f}_{Ds}$ measured with 8% precision
- $D^0 \rightarrow K^-e^+\nu$: 1% accuracy in m_{pole} , 10% in α_{pole} $f_+(0)$ accuracy below 2%
- $B(D^0 \rightarrow K^-\pi^+)$ measured with 2% accuracy
- $D^0 \rightarrow K^+K^-\pi^0$ Dalitz: r_D precision below 3% δ_D with 8% precision
- First evidence of Ω_c production in B decays

$D^0 \rightarrow K^+ K^- \pi^0$ Dalitz analysis

	Model I		
State	$\text{Amplitude, } a_r$	Phase, ϕ_r (°)	Fraction, f_r (%)
$K^{*}(892)^{+}$	1.0 (fixed)	0.0 (fixed)	$45.2{\pm}0.8{\pm}0.6$
$K^{*}(1410)^{+}$	$2.29{\pm}0.37{\pm}0.20$	$86.7 {\pm} 12.0 {\pm} 9.6$	$3.7{\pm}1.1{\pm}1.1$
$K^{+}\pi^{0}(S)$	$1.76 {\pm} 0.36 {\pm} 0.18$	$-179.8{\pm}21.3{\pm}12.3$	$16.3 {\pm} 3.4 {\pm} 2.1$
$\phi(1020)$	$0.69 {\pm} 0.01 {\pm} 0.02$	$-20.7 \pm 13.6 \pm 9.3$	$19.3 {\pm} 0.6 {\pm} 0.4$
$f_0(980)$	$0.51 {\pm} 0.07 {\pm} 0.04$	$-177.5 \pm 13.7 \pm 8.6$	$6.7{\pm}1.4{\pm}1.2$
$[a_0(980)^0]$	$[0.48 \pm 0.08 \pm 0.04]$	$[-154.0\pm14.1\pm8.6]$	$[6.0 \pm 1.8 \pm 1.2]$
$f_2'(1525)$	$1.11 {\pm} 0.38 {\pm} 0.28$	$-18.7 \pm 19.3 \pm 13.6$	$0.08 {\pm} 0.04 {\pm} 0.05$
$K^{*}(892)^{-}$	$0.601 \pm 0.011 \pm 0.011$	$-37.0 \pm 1.9 \pm 2.2$	$16.0 {\pm} 0.8 {\pm} 0.6$
$K^{*}(1410)^{-}$	$2.63{\pm}0.51{\pm}0.47$	$-172.0 {\pm} 6.6 {\pm} 6.2$	$4.8{\pm}1.8{\pm}1.2$
$K^-\pi^0(S)$	$0.70 {\pm} 0.27 {\pm} 0.24$	$133.2 \pm 22.5 \pm 25.2$	$2.7{\pm}1.4{\pm}0.8$
	Model II		
State	$\qquad \qquad \text{Amplitude, } a_r$	Phase, ϕ_r (°)	Fraction, f_r (%)
$\frac{\text{State}}{K^*(892)^+}$	$\begin{array}{ c c }\hline & \text{Amplitude, } a_r \\ \hline & 1.0 \text{ (fixed)} \end{array}$	Phase, ϕ_r (°) 0.0 (fixed)	Fraction, f_r (%) 44.4±0.8±0.6
State $K^*(892)^+$ $K^*(1410)^+$	$\frac{\text{Amplitude, } a_r}{1.0 \text{ (fixed)}}$	Phase, ϕ_r (°) 0.0 (fixed)	Fraction, f_r (%) 44.4±0.8±0.6
State $K^*(892)^+$ $K^*(1410)^+$ $K^+\pi^0(S)$	$\begin{array}{c} \text{Amplitude, } a_r \\ 1.0 \text{ (fixed)} \\ 3.66 \pm 0.11 \pm 0.09 \end{array}$	$\begin{array}{c} \text{Phase, } \phi_r \ (^\circ) \\ 0.0 \ (\text{fixed}) \\ 0.148.0 \pm 2.0 \pm 2.8 \end{array}$	Fraction, f_r (%) 44.4±0.8±0.6 71.1±3.7±1.9
State $K^*(892)^+$ $K^*(1410)^+$ $K^+\pi^0(S)$ $\phi(1020)$	$\begin{array}{c c} & \text{Amplitude, } a_{7} \\ & 1.0 \text{ (fixed)} \\ & 3.66 {\pm} 0.11 {\pm} 0.09 \\ & 0.70 {\pm} 0.01 {\pm} 0.02 \end{array}$	Phase, ϕ_r (°) 0.0 (fixed) 0.148.0 \pm 2.0 \pm 2.8 18.0 \pm 3.7 \pm 3.6	Fraction, f_r (%) 44.4±0.8±0.6 71.1±3.7±1.9 19.4±0.6±0.5
$ \begin{array}{c} {\rm State} \\ \hline K^*(892)^+ \\ K^*(1410)^+ \\ K^+ \pi^0(S) \\ \phi(1020) \\ f_0(980) \end{array} $	Amplitude, a_r 1.0 (fixed) 3.66±0.11±0.09 0.70±0.01±0.02 0.64±0.04±0.03	Phase, ϕ_r (°) 0.0 (fixed) 0.148.0 \pm 2.0 \pm 2.8 18.0 \pm 3.7 \pm 3.6 -60.8 \pm 2.5 \pm 3.0	Fraction, f_r (%) 44.4±0.8±0.6 71.1±3.7±1.9 19.4±0.6±0.5 10.5±1.1±1.2
$ \begin{array}{c} \textbf{State} \\ \hline K^*(892)^+ \\ K^*(1410)^+ \\ K^+ \pi^0(S) \\ \phi(1020) \\ f_0(980) \\ \hline [a_0(980)^0] \end{array} $	Amplitude, a_r 1.0 (fixed) 3.66±0.11±0.09 0.70±0.01±0.02 0.64±0.04±0.03 [0.68±0.06±0.03]	Phase, ϕ_r (°) 0.0 (fixed) 0.148.0 \pm 2.0 \pm 2.8 18.0 \pm 3.7 \pm 3.6 0.60.8 \pm 2.5 \pm 3.0 [-38.5 \pm 4.3 \pm 3.0]	Fraction, f_r (%) $44.4\pm0.8\pm0.6$ $71.1\pm3.7\pm1.9$ $19.4\pm0.6\pm0.5$ $10.5\pm1.1\pm1.2$ $[11.0\pm1.5\pm1.2]$
$ \begin{array}{c} \textbf{State} \\ \hline K^*(892)^+ \\ K^*(1410)^+ \\ K^+ \pi^0(S) \\ \phi(1020) \\ f_0(980) \\ \hline [a_0(980)^0] \\ f_2'(1525) \end{array} $	Amplitude, a_r 1.0 (fixed) 3.66±0.11±0.09 0.70±0.01±0.02 0.64±0.04±0.03 [0.68±0.06±0.03]	Phase, ϕ_r (°) 0.0 (fixed) 0.148.0 \pm 2.0 \pm 2.8 18.0 \pm 3.7 \pm 3.6 0.60.8 \pm 2.5 \pm 3.0 [-38.5 \pm 4.3 \pm 3.0]	Fraction, f_r (%) 44.4±0.8±0.6 71.1±3.7±1.9 19.4±0.6±0.5 10.5±1.1±1.2 [11.0±1.5±1.2]
$ \begin{array}{c} \textbf{State} \\ \hline K^*(892)^+ \\ K^*(1410)^+ \\ K^+ \pi^0(S) \\ \phi(1020) \\ f_0(980) \\ \hline [a_0(980)^0] \\ f_2'(1525) \\ K^*(892)^- \end{array} $	Amplitude, a_r 1.0 (fixed) 3.66±0.11±0.09 0.70±0.01±0.02 0.64±0.04±0.03 [0.68±0.06±0.03] 0.597±0.013±0.009	Phase, ϕ_r (°) 0.0 (fixed) 0.148.0 \pm 2.0 \pm 2.8 18.0 \pm 3.7 \pm 3.6 -60.8 \pm 2.5 \pm 3.0 [-38.5 \pm 4.3 \pm 3.0] 0.34.1 \pm 1.9 \pm 2.2	Fraction, f_r (%) 44.4±0.8±0.6 71.1±3.7±1.9 19.4±0.6±0.5 10.5±1.1±1.2 [11.0±1.5±1.2] 15.9±0.7±0.6
State $K^*(892)^+$ $K^*(1410)^+$ $K^+\pi^0(S)$ $\phi(1020)$ $f_0(980)$ $[a_0(980)^0]$ $f'_2(1525)$ $K^*(892)^-$ $K^*(1410)^-$	Amplitude, a_r 1.0 (fixed) 3.66±0.11±0.09 0.70±0.01±0.02 0.64±0.04±0.03 [0.68±0.06±0.03] 0.597±0.013±0.009	Phase, ϕ_r (°) 0.0 (fixed) 0.148.0 $\pm 2.0 \pm 2.8$ 18.0 $\pm 3.7 \pm 3.6$ 0.60.8 $\pm 2.5 \pm 3.0$ 1.38.5 $\pm 4.3 \pm 3.0$] 0.34.1 $\pm 1.9 \pm 2.2$	Fraction, f_r (%) 44.4±0.8±0.6 71.1±3.7±1.9 19.4±0.6±0.5 10.5±1.1±1.2 [11.0±1.5±1.2] 15.9±0.7±0.6

EPS 007

A. Oyanguren