D Decays at CLEO-c

David G. Cassel

Cornell University

For the CLEO Collaboration

- Absolute D^0 and D^+ Branching Fractions
- Absolute D_s Branching Fractions
- Summary and Conclusions

EPS HEP2007 Conference Manchester, July 19, 2007

$e^+e^- ightarrow \psi(3770) ightarrow Dar{D}$ Events and Analyses

 $e^+e^- \rightarrow \psi(3770) \rightarrow D^+D^ D^+ \rightarrow K^-\pi^+\pi^+ \text{ and } D^- \rightarrow K^+\pi^-\pi^-$

- CLEO-c uses D^+ and D^0 decays from $e^+e^- \rightarrow \psi(3770) \rightarrow D^+D^-$ or $D^0\bar{D}^0$
 - No additional pions produced
 - Extremely clean events
- Leptonic, semileptonic, and key hadronic branching fractions measured with a double tagging technique
 - Other branching fractions measured relative to a reference mode, usually $D^0 \rightarrow K^- \pi^+$ or $D^+ \rightarrow K^- \pi^+ \pi^+$
- Absolute branching fractions for key Cabibbo Favored hadronic modes were published with 56 pb⁻¹of data.
 - **Preliminary** update with 281 pb^{-1} .
- Some other branching ratios utilizing 281 pb⁻¹ already published or submitted for publication

Absolute D^0 and D^+ Hadronic Branching Fractions

Utilize technique pioneered by MARK III

- Single Tag (ST) Yields $D \to i$ and $\bar{D} \to X$ $N_i = N_{D\bar{D}} \mathcal{B}_i \epsilon_i$
- $\bullet \quad \text{Double Tag (DT) Yields} \quad D \to i \text{ and } \bar{D} \to \bar{j} \quad N_{i\bar{j}} = N_{D\bar{D}} \ \mathcal{B}_i \ \mathcal{B}_{\bar{j}} \ \epsilon_{i\bar{j}}$
 - Obtain ST and DT yields from fits to beam constrained mass distributions
 - Compute branching fractions and $N_{D\bar{D}}$

$${\cal B}_i = rac{N_{iar j}}{N_{ar j}} \; rac{\epsilon_{ar j}}{\epsilon_{iar j}} \;\; ext{ and } \;\; N_{Dar D} = rac{N_i N_{ar j}}{N_{iar j}} \; rac{\epsilon_{iar j}}{\epsilon_i\epsilon_{ar j}}$$

- $\epsilon_{i\bar{j}} \approx \epsilon_i \epsilon_{\bar{j}}$ so \mathcal{B}_i is nearly independent of efficiencies for \bar{j} .
- Branching fraction values independent of luminosity or $N_{D\bar{D}}$ measurements.
- Do a χ^2 fit including all yields and all errors correlated and uncorrelated.
- Input N_i and $N_{\overline{i}}$ separately, but constrain $\mathcal{B}_i = \mathcal{B}_{\overline{i}}$

Yields from 281 pb^{-1}

• ST all modes: 230,225 $D^0/ar{D}^0$

 $egin{array}{rcl} 167,086 & D^+/D^- \ 8,867\pm97 \ D^+D^- \end{array}$

• DT all modes: $13,575 \pm 120 \ D^0 \overline{D}^0$

Single Tag and Double Tag Yields

Absolute Hadronic D^0 and D^+ Branching Fractions

CLEO-c 281 pb⁻¹ Preliminary

Mode	B (%)
$D^0 o K^- \pi^+$	$3.87 \pm 0.04 \pm 0.08$
$D^0 o K^- \pi^+ \pi^0$	$14.6\pm0.1\pm0.4$
$D^0 o K^- \pi^+ \pi^+ \pi^-$	$8.3\pm0.1\pm0.3$
$D^+ o K^- \pi^+ \pi^+$	$9.2\pm0.1\pm0.2$
$D^+ ightarrow K^- \pi^+ \pi^+ \pi^0$	$6.0\pm0.1\pm0.2$
$D^+ o K^0_S \pi^+$	$1.55 \pm 0.02 \pm 0.05$
$D^+ o K^0_S \pi^+ \pi^0$	$7.2\pm0.1\pm0.3$
$D^+ ightarrow K^0_S \pi^+ \pi^+ \pi^-$	$3.13 \pm 0.05 \pm 0.14$
$D^+ o K^+ K^- \pi^+$	$0.93 \pm 0.02 \pm 0.03$

- Systematic errors dominate!
- Final State Radiation is significant $\sim 2\% 3\%$
 - Ignoring FSR decreases \mathcal{B} 's

Compare to PDG04 because PDG06 includes CLEO-c 56 pb^{-1} in averages

Comparison of $D \to K_S^0 \pi$ and $D \to K_L^0 \pi$ Decay Rates

Cabibbo-Favored and Doubly-Cabibbo-Suppressed amplitudes for $D \to K^0 \pi$.

- Observed final states are K_S^0 and K_L^0
- Interference between CF and DCS amplitudes can lead to different rates for $D \to K_S^0 \pi$ and $D \to K_L^0 \pi$ (Bigi and Yamamoto)
- Reconstruct $D \to K_L^0 \pi$ from missing mass

$$R(D)\equiv rac{\mathcal{B}(D o K^0_S\pi)-\mathcal{B}(D o K^0_L\pi)}{\mathcal{B}(D o K^0_S\pi)+\mathcal{B}(D o K^0_L\pi)}$$

CLEO-c Preliminary

- U-spin and SU(3) predict $R(D^0) = 2 \tan^2(\theta_c)$ which gives $R(D^0) = 0.109 \pm 0.001$
- $R(D^+)$ not so simple: $D^+ \to \bar{K}^0 \pi^+$ external & internal spectator $D^+ \to K^0 \pi^+$ internal spectator & annihilation

D_s Production Cross Section

- Little was know about the composition of $\sigma(e^+e^-)$ above $E_{cm}=3.8~{
 m GeV}.$
- CLEO scan with $\sim 5 \text{ pb}^{-1}$ per point with fast turnaround and feedback
- More luminosity in the region around $E_{cm} = 4.17 \text{ GeV}$ where $D_s^{\pm} D_s^{*\mp}$ peaks
 - $\sigma(e^+e^- \rightarrow D_s^{\pm}D_s^{*\mp}) \approx 0.9 \text{ nb}$

Selecting $D_s^{\pm} D_s^{*\mp}$ Events

Ignore the γ or π^0 from D_s^* decay Select $D_s^{\pm} D_s^{*\mp}$ events using:

• m_{inv} , the candidate invariant mass

•
$$m_{BC}\equiv [E_{
m beam}^2-p^2(D_s)]^{rac{1}{2}}$$

- m_{BC} is a proxy for momentum
- m_{BC} distribution is narrow for D_s
- m_{BC} distribution is wide for D_s^*

Analyzing $D_s^{\pm} D_s^{*\mp}$ Events

Measuring ST and DT events:

- Require $M_{bc} > 2.01 \text{ GeV}$
- Fit ST $M(D_s)$ candidate invariant mass distribution
- Cut DT in $M(D_s^-)$ vs $M(D_s^+)$ plane
 - Blue box signal
 - Red boxes sidebands

Absolute Hadronic D_s Branching Fractions

CLEO-c Preliminary			
$195 \ { m pb}^{-1}$ of data			
D_s^+ Mode	B (%)		
$\overline{K_S K^+}$	$1.50 \pm 0.09 \pm 0.05$		
$K^-K^+\pi^+$	$5.57 \pm 0.30 \pm 0.19$		
$K^-K^+\pi^+\pi^0$	$5.62 \pm 0.33 \pm 0.51$		
$\pi^+\pi^+\pi^-$	$1.12 \pm 0.08 \pm 0.05$		
$\pi^+\eta$	$1.47 \pm 0.12 \pm 0.14$		
$\pi^+\eta^\prime$	$4.02 \pm 0.27 \pm 0.30$		

Additional 105 pb^{-1} to be analyzed

Belle measures $\mathcal{B}(D_s^+ \to K^- K^+ \pi^+)$ utilizing a partial reconstruction technique for $e^+e^- \to D_{s1}D_s^*$ events hep-ex/0701053

		${\cal B}(D^+_s o K^- K^+ \pi^+) ~(\%)$
CLEO	Preliminary	$5.57 \pm 0.30 \pm 0.19$
Belle	Preliminary	$4.0 \pm 0.4 \pm 0.4$

Comparison with PDG 2006

Partial $D_s^+ \to K^- K^+ \pi^+$ Branching Fractions and $D_s^+ \to \phi \pi^+$

 ${\cal B}(D^+_s o \phi \pi^+ o K^- K^+ \pi^+) ext{ is one of the largest } D_s ext{ branching fractions}$

- A branching fraction called $\mathcal{B}(D_s^+ \to \phi \pi^+)$ has often been used as a reference branching fraction for D_s decays.
 - Derived from a fairly narrow mass cut (typically near $\pm 10 \text{ MeV}/c^2$) around the ϕ peak in the $M(K^+K^-)$ distribution in $D_s^+ \to K^-K^+\pi^+$ events.
- E687 and FOCUS report significant contributions from $f_0(980)$ (or $a_0(980)$) in the $\phi\pi$ region of the $D_s^+ \to K^- K^+ \pi^+$ Dalitz plot.

Partial $D_s^+ \to K^- K^+ \pi^+$ Branching Fractions and $D_s^+ \to \phi \pi^+$

With a mass cut of approximately $\pm 10 \text{ MeV}/c^2$:

- The scalar contribution under the ϕ peak in $M(K^+K^-)$ is ~ 6%.
 - Hence about 6% of the quoted $\mathcal{B}(D_s^+ \to \phi \pi^+)$ is due to other processes.
 - This contribution is comparable to current CLEO-c errors for partial $D_s^+
 ightarrow K^- K^+ \pi^+$ branching fractions
 - CLEO now quotes $\mathcal{B}_{\Delta M} \equiv \mathcal{B}(D_s^+ \to K^- K^+ \pi^+)$ with $|M(K^-K^+)-M_\phi| < \Delta M \,\, {
 m MeV}/c^2.$
 - This could become the reference branching fraction for D_{\circ}^{+} decays!

	${\cal B}_{\Delta M} (\%)$
${\cal B}_{10}$	$1.98 \pm 0.12 \pm 0.09$
${\cal B}_{20}$	$2.25 \pm 0.13 \pm 0.12$
PDG 07	2.2 ± 0.2

CLEO-c Preliminary

BaBar 05 $4.81 \pm 0.52 \pm 0.38 -11.5 + 15.5$ $4.62 \pm 0.36 \pm 0.51$ BaBar 06 **PDG 07** 4.5 ± 0.4

CLEO 96

The PDG 07 value is ${\cal B}(D^+_{\circ} o \phi \pi^+) imes {\cal B}(\phi o K^- K^+)$

${\cal B}(D^+_s o \phi \pi^+)$) values used	for PDG 07
---------------------------------	---------------	------------

Experiment ${\cal B}(D_s^+ o \phi \pi^+)$ (%) $\Delta M \; {
m MeV}/c^2$

 ± 8

 ± 15

 $3.59 \pm 0.77 \pm 0.48$

Cabibbo Suppressed D_s^+ Decays to Two Pseudoscalars

[†] Isospin Forbidden

Analysis technique:

- Measure single tag yields of Cabibbo favored and suppressed D_s^+ decays.
- Determine ratios of branching fractions from ratios of yields and efficiencies.

Cabibbo Suppressed

Cabibbo Suppressed D_s^+ Decays to Two Pseudoscalars

Preliminary Results

Ratio of Branching Fractions	Value
${\cal B}(D^+_s o K^+\eta)/{\cal B}(D^+_s o \pi^+\eta)$	$(8.0\pm1.5)\%$
${\cal B}(D^+_s o K^+ \eta') / {\cal B}(D^+_s o \pi^+ \eta')$	$(3.9\pm1.3)\%$
${\cal B}(D^+_s o \pi^+ K^0_S)/{\cal B}(D^+_s o K^+ K^0_S)$	$(8.3\pm0.9)\%$
${\cal B}(D^+_s o K^+ \pi^0) / {\cal B}(D^+_s o K^+ K^0_S)$	$(4.2\pm1.2)\%$
${\cal B}(D^+_s o \pi^+ \pi^0)/{\cal B}(D^+_s o K^+ K^0_S)$	(< 4.0)%

Consistent with $\tan^2 \theta_C = 5\%$

Summary and Conclusions

CLEO is providing precision measurements of absolute D hadronic branching fractions using the CLEO-c detector in the charm threshold region

- Events are very clean with little background
- 281 pb⁻¹ Preliminary results for D^0 and D^+ limited by systematic errors
 - Cabibbo Favored decay errors $\lesssim 3\%$
 - Final results coming soon
 - Some improvement with more data may be possible
 - Now Final State Radiation must be considered effects $\sim 2\% 3\%$
 - This is an interesting problem for the PDG
- 195 pb⁻¹ Preliminary results for D_s limited by statistics
 - Cabibbo Favored decay errors as low as $\lesssim 10\%$
 - Results with more data coming soon
 - Scalar K^+K^- contribution becoming significant in measurements of $\mathcal{B}(D_s \to K^-K^+\pi^+)$ with $M(K^+K^-)$ cuts around the ϕ peak
 - Hence, the branching fraction conventionally quoted as $\mathcal{B}(D_s \to \phi \pi^+)$ has significant contributions from other processes
 - Need to define a new reference branching fraction for D_s decays
 - CLEO provides $\mathcal{B}_{\Delta M} \equiv \mathcal{B}(D_s^+ \to K^- K^+ \pi^+)$ with $|M(K^- K^+) M_{\phi}| < \Delta M \text{ MeV}/c^2.$