$D^{\theta} - \overline{D}^{\theta}$ Mixing: Theory Introduction

Diego Guadagnoli Technical University Munich

Basic Formalism

One calculates the time-evolution of the 'flavor-eigenstates' $D^0 = (c\overline{u})$ and \overline{D}^0 through

$$i\frac{d}{dt}\begin{pmatrix}D^{0}(t)\\\overline{D}^{0}(t)\end{pmatrix} = \left(\hat{M} - \frac{i}{2}\hat{\Gamma}\right)\begin{pmatrix}D^{0}(t)\\\overline{D}^{0}(t)\end{pmatrix} \quad \text{with} \quad \hat{M} = \begin{pmatrix}M & M_{12}\\M_{12}^{*} & M\end{pmatrix}, \quad \hat{\Gamma} = \begin{pmatrix}\Gamma & \Gamma_{12}\\\Gamma_{12}^{*} & \Gamma\end{pmatrix},$$

because of CPT + Hermiticity

Mass eigenstates [with masses and widths $m_{1,2}$ and $\Gamma_{1,2}$] are defined through

$$\langle D_{1,2} \rangle = p \ \langle D^0 \rangle \pm q \ \langle \overline{D}^0 \rangle$$
 with $\frac{q}{p} = \sqrt{\frac{M_{12}^* - \frac{1}{2}\Gamma_{12}^*}{M_{12} - \frac{1}{2}\Gamma_{12}}}$

Basic mixing observables

$$x = \frac{m_2 - m_1}{\Gamma}, \quad y = \frac{\Gamma_2 - \Gamma_1}{2\Gamma}$$

D.Guadagnoli, HEP 2007, Manchester, 19-25 July 2007

and

One calculates the time-evolution of the 'flavor-eigenstates' $D^0 = (c\overline{u})$ and \overline{D}^0 through

$$i\frac{d}{dt}\begin{pmatrix}D^{0}(t)\\\overline{D}^{0}(t)\end{pmatrix} = \left(\hat{M} - \frac{i}{2}\hat{\Gamma}\right)\begin{pmatrix}D^{0}(t)\\\overline{D}^{0}(t)\end{pmatrix} \quad \text{with} \quad \hat{M} = \begin{pmatrix}M & M_{12}\\M_{12}^{*} & M\end{pmatrix}, \quad \hat{\Gamma} = \begin{pmatrix}\Gamma & \Gamma_{12}\\\Gamma_{12}^{*} & \Gamma\end{pmatrix},$$

because of CPT + Hermiticity

Mass eigenstates [with masses and widths $m_{1,2}$ and $\Gamma_{1,2}$] are defined through

$$\langle D_{1,2} \rangle = p \ \langle D^0 \rangle \pm q \ \langle \overline{D}^0 \rangle$$
 with $\frac{q}{p} = \sqrt{\frac{M_{12}^* - \frac{i}{2}\Gamma_{12}^*}{M_{12} - \frac{i}{2}\Gamma_{12}}}$ and

Basic mixing observables

$$x = \frac{m_2 - m_1}{\Gamma}, \quad y = \frac{\Gamma_2 - \Gamma_1}{2\Gamma}$$

If |q/p| = 1 \implies $|D_1\rangle$ CP even $|D_2\rangle$ CP odd since one can choose phases such that $\langle D^0 \rangle \stackrel{\text{CP}}{\leftrightarrow} / \overline{D}^0 \rangle$

 $\checkmark If |q/p| \neq 1$

Mass eigenstates cannot be chosen as CP eigenstates

$D^0 - \overline{D}^0$ mixing in the SM

 \checkmark

The SM contribution to meson mixings is well-described - in the K, B_d and B_s cases - by box diagrams with W - up-type-quarks

In the *D* case one has: $D^0 \sim \begin{pmatrix} c \\ \overline{u} \end{pmatrix}$, so that box contributions for D^0 -mixing give

$D^{0} - \overline{D}^{0}$ mixing in the SM

 \checkmark

The SM contribution to meson mixings is well-described – in the K, B_d and B_s cases – by box diagrams with W – up-type-quarks

In the *D* case one has: $D^0 \sim \begin{pmatrix} c \\ \overline{u} \end{pmatrix}$, so that box contributions for D^0 -mixing give

Further remarks

In the *D*-mixing case, one has

$$\frac{[b-b \text{ contrib.}]}{[s-s \text{ contrib.}]} = \frac{m_b^2}{m_s^2} \frac{(V_{ub} V_{cb}^*)^2}{(V_{us} V_{cs}^*)^2} \approx (1.8 \cdot 10^3) \times (A^4 \lambda^8) \approx 10^{-3}$$

Compare with the *K*, $B_{d,s}$ cases, where the 3rd family (top) contribution is always important [for $B_{d,s}$ it is dominant]

Further remarks

 $\stackrel{>}{\sim}$ In the *D*-mixing case, one has

$$\frac{[b-b \text{ contrib.}]}{[s-s \text{ contrib.}]} = \frac{m_b^2}{m_s^2} \frac{(V_{ub} V_{cb}^*)^2}{(V_{us} V_{cs}^*)^2} \approx (1.8 \cdot 10^3) \times (A^4 \lambda^8) \approx 10^{-3}$$

Compare with the *K*, $B_{d,s}$ cases, where the 3rd family (top) contribution is always important [for $B_{d,s}$ it is dominant]

Consequences:

(SM box is tiny]: in principle ideal room for New Physics to show up

[long distance]: $m_c \approx$ hadronic scale. *K*, π intermediate states likely to dominate

Estimates:

 $x_{box} \le 10^{-5}$ $x_{long \, dist.} \le O(10^{-3})$

Where to look for $D^0 - \overline{D}^0$ mixing

Example: "wrong sign" $D \rightarrow K \pi$ decays

Naïve estimate

$$R_D \equiv \frac{|\langle K^+ \pi^- | H_{\text{eff}} | D_0 \rangle|^2}{|\langle K^- \pi^+ | H_{\text{eff}} | D_0 \rangle|^2} \sim (\tan \theta_c)^4 = 0.3\%$$

In the wrong-sign decays, the "DCS" and "mixing + CF" contributions become competitive. Mixing is then measurable.

Recent Experimental Progress

Access to:

BaBar hep-ex/0703020	• Studies the time dependence of $D^0 \rightarrow K^- \pi^+$ [CF] and $D^0 \rightarrow K^+ \pi^-$ [DCS] [and C-conj. modes]	$R_{D}, x_{\pm}^{'2} = x^{'2}, y_{\pm}^{'} = y^{'}$ (assuming no CPV) Primed x, y are a rotation of x, y by the strong $K\pi$ phase
Belle 0704.1000 [hep-ex]	• Studies the time dependent Dalitz distribution of $D^0 \rightarrow K_s^{\ 0} \pi^+ \pi^-$	х, у
hep-ex/0703036	• Calculates the asymmetry between the decay $D^0 \rightarrow K^- \pi^+$ [CF] and decays to CP eigenstates (K ⁺ K ⁻ , $\pi^+\pi^-$)	y_{CP} (Assuming no CPV: $y_{CP} = y$
CLEO hep-ex/0607078	• Measures the BR of <i>D</i> ⁰ decays to hadronic flavored states, CP eigenstates, and semilep. states	strong phase $\delta_{K\!\pi}$

Combining the data

Data can all be expressed in terms of the quantities: $x, y, \delta_{\kappa\pi}, \phi, |q/p|$

from which one calculates the fundamental mixing parameters:

$$M_{12} = |M_{12}|e^{-i\Phi_{12}}, \quad \Gamma_{12} = |\Gamma_{12}|,$$

$$\begin{split} |M_{12}|\tau_D &= \sqrt{\frac{x^2 + \delta^2 y^2}{4(1 - \delta^2)}}, \quad |\Gamma_{12}|\tau_D = \sqrt{\frac{y^2 + \delta^2 x^2}{1 - \delta^2}},\\ \sin \Phi_{12} &= \frac{|\Gamma_{12}|^2 + 4|M_{12}|^2 - (x^2 + y^2)|q/p|^2/\tau_D^2}{4|M_{12}\Gamma_{12}|},\\ \text{with} \ \delta^2 &= |p|^2 - |q|^2 \simeq \frac{1}{4} \left(\left|\frac{q}{p}\right|^2 - 1\right)^2 \end{split}$$

Parameter	· Value	Ref.
$x_{+}^{\prime 2}$	$(-0.24 \pm 0.43 \pm 0.30) \cdot 10^{-3}$	[8]
$x_{-}^{\prime 2}$	$(-0.20\pm0.41\pm0.29)\cdot10^{-3}$	[8]
y'_{\pm}	$(9.8 \pm 6.4 \pm 4.5) \cdot 10^{-3}$	[8]
y'_{-}	$(9.6 \pm 6.1 \pm 4.3) \cdot 10^{-3}$	[8]
x	$(8.0 \pm 3.4) \cdot 10^{-3}$	[9]
y	$(3.3 \pm 2.8) \cdot 10^{-3}$	[9]
YCP	$(13.1 \pm 4.1) \cdot 10^{-3}$	[10]
A_{Γ}	$(0.1 \pm 3.4) \cdot 10^{-3}$	[10]
$\cos \delta_{K\pi}$	1.09 ± 0.66	[11]
τ_D	$(0.4101 \pm 0.0015) \ ps$	[13]

Global Fit

Parameter	68% prob.	95% prob.
τ	$(4.8\pm2.8)\cdot10^{-3}$	[-0.0007,0.0102]
y	$(6.1 \pm 1.9) \cdot 10^{-3}$	[0.0023, 0.0102]
$\delta_{K\pi}$	$(-21 \pm 43)^{\circ}$	$[-103^{\circ}, 45^{\circ}]$
ϕ	$(-1\pm10)^\circ$	$[-46^{\circ}, 25^{\circ}]$
$ \frac{q}{p} - 1$	0.01 ± 0.20	[-0.41,0.64]
$ M_{12} $	$(6.1 \pm 3.1) \cdot 10^{-3} \text{ ps}^{-1}$	$[0.0007, 0.0121] \ \mathrm{ps}^{-1}$
Φ_{12}	$(-4 \pm 33)^{\circ}$	$[-88^\circ, 70^\circ] \cup [163^\circ, 268^\circ]$
$ \Gamma_{12} $	$(15.5 \pm 4.5) \cdot 10^{-3} \text{ ps}^{-1}$	$[0.0067, 0.0247] \ \mathrm{ps}^{-1}$

Model-Independent constraints on New Physics

 \checkmark

The determination of M_{12} can be used to place constraints on any extension of the SM

Ciuchini et al. hep-ph/0704204

D.Guadagnoli, HEP 2007, Manchester, 19-25 July 2007

Application: Constraints on the 'general' MSSM

 \checkmark

In the MSSM, squarks get (most of their) masses via 'soft-terms'. The latter are off-diagonal in flavor-chirality and generate FCNCs.

When soft-terms are completely general, one can suppose SUSY contributions to $\Delta F = 2$ be dominated by quark-squark-gluino boxes.

Conclusions

The measurement of $D^0 - \overline{D}^0$ mixing represents an outstanding experimental achievement

It is a major step forward for Flavor Physics in general: unique channel to explore down-quark-mediated $\Delta F=2$

A clear-cut assessment of NP effects in *e.g.* the oscillation frequency is spoiled by the still poor control of the long-distance, SM, contributions

In this situation, sufficiently 'strong' statements on NP can only be done in cases of **very invasive** new FCNC sources, like the general MSSM

New data put models with quark-squark alignment outside the reach of the LHC

Conclusions

The measurement of $D^0 - \overline{D}^0$ mixing represents an outstanding experimental achievement

It is a major step forward for Flavor Physics in general: unique channel to explore down-quark-mediated $\Delta F=2$

 \checkmark

A clear-cut assessment of NP effects in *e.g.* the oscillation frequency is spoiled by the still poor control of the long-distance, SM, contributions

 New data put models with quark-squark alignment outside the reach of the LHC

However, we do have a Golden Channel for NP: observation of (large) CPV

Immune to hadronic uncertainties

Clear NP signature if, e.g., $\Phi_{12} > 10^{-2}$