Experimental Results on $|V_{cb}|$ and $b \rightarrow c \ell \nu$ Transitions at BABAR

Verena Klose Technische Universität Dresden on behalf of the *BABAR* collaboration

The 2007 Europhysics Conference on High Energy Physics Manchester, England, 19-25 July 2007

Outline

Inclusive semileptonic decays Updated hadronic-mass moments and mixed hadronic-mass and -energy moments HQE Fit

• Measurement of $B^- \rightarrow D^{*0}e^-\overline{v}$

Exclusive semileptonic decays containing a au lepton

• Measurement of $\mathcal{B}(\overline{B})$

and

$$\begin{array}{l} \mathcal{B} & (\overline{B}{}^{0} \rightarrow D^{+} \tau \nu) \\ \mathcal{B} & (B^{-} \rightarrow D^{0} \tau \nu) \\ \mathcal{B} & (\overline{B}{}^{0} \rightarrow D^{*+} \tau \nu) \\ \mathcal{B} & (B^{-} \rightarrow D^{*0} \tau \nu) \end{array}$$

Sensitivity to New Physics

HQE and Semileptonic B Decays

$$\begin{split} \Gamma_{sl}(B \to X_c \ell \nu) &= \frac{G_F^2 m_b^5}{192 \pi^3} |V_{cb}|^2 (1 + A_{EW}) A_{pert} A_{nonpert} \\ \left(\frac{\mathcal{B}(B \to X_c \ell \nu)}{\tau_B} = \frac{f_{HQE}^{(0)}}{10} |V_{cb}|^2 \right) \\ & \text{depends on } m_b, m_c \text{ and } \text{HQE parameters} \\ \langle m_X^n \rangle &= f_{HQE}^{(n)}(p_\ell^* > p_{\ell,\min}^*; m_b, m_c, \mu_\pi^2, \mu_G^2, \rho_D^3, \rho_{LS}^3) \end{split}$$

Measurement of

• hadronic mass, lepton energy moments in $b \rightarrow c l \nu$ • mixed hadronic moments $n_X^2 = m_X^2 - 2\tilde{\Lambda} E_X + \tilde{\Lambda}^2$

• mixed hadronic moments $n_X = m_X - 2\Lambda E_X +$ • Photon energy moments in $b \rightarrow s\gamma$

••• Inclusive $B \rightarrow X_c l \nu$ Hadronic Moments

1. Inclusive reconstruction in tagged events with fully reconstructed B_{reco} meson, quality checked with m_{ES}

- 2. Measure exactly one e/μ ($q_{lep} \times q_{breco} < 0$) in remaining particles with $p_l^* > 0.8 \text{ GeV/c}$
- 3. All remaining particles combined to inclusive X_c system
- **4.** Kinematic fit (2C):
 - Energy- and momentum-conservation
 - + E_{miss} and p_{miss} consistent with neutrino hypothesis

Extraction of Hadronic Moments

•••• HQE Fit

(open symbols not fitted)

••• Measurement of $B^- \rightarrow D^{*0} e^- \overline{v}$

• Theory connects $|V_{cb}|$ with the differential rate

$$\frac{\mathrm{d}\Gamma}{\mathrm{d}w}(B \to D^* \ell \nu) = \frac{G_F^2 |V_{cb}|^2}{48\pi^3} \mathcal{F}^2(w) \mathcal{G}(w)$$

- $w = \mathbf{v}_{\mathbf{B}} \cdot \mathbf{v}_{\mathbf{D}^*}$
- $\mathcal{G}(w) \propto \sqrt{w^2 1}$ (phase space)
- *F*(w) form factor expressed in terms of D* helicity amplitudes parametrized with
 BABAR, hep-ex/0607067

• measured FF ratios $R_1(1), R_2(1)$

• and parameter related to slope at $w=1: \rho_{A1}^2$

ullet Branching fraction from $\mathcal{B}=$

C 112

$$\int \frac{\mathrm{d}B}{\mathrm{d}w} \mathrm{d}w$$

So Far

Mainly B⁰ decays including a slow π[±]
Independent B⁻ measurement with a slow π⁰

BaBar

••• Analysis for $B^- \rightarrow D^{*0} e^- \overline{v}$

• Discriminating variables: • $\Delta m = m(K\pi\pi^0) - m(K\pi)$ • $\cos \theta^*_{BY} = \frac{2E^*_B E^*_Y - m^2_B - m^2_Y}{2p^*_B p^*_Y}$

• Estimate for w $\implies \tilde{w} = \frac{1}{2} \left(w(\beta_{\min}^*) + w(\beta_{\max}^*) \right)$

 β^* angle between *B* and *D*^{*} in CM

 Binned maximum likelihood fit to 3-dim. distribution in

- $\circ \Delta m$, cos $\Theta ^{*}{}_{\mathrm{BY}}$, and $~~\widetilde{w}$
- 49 free parameters:
 - $F(1)|V_{cb}|, \rho^{2}_{A1},$
 - shapes and normalizations

• Fit to $B^- \rightarrow D^{*0} e^- \overline{v}$

- Fit Results
 - Obtained χ^2 (dof) = 4436 (4095)
 - No accumulation of high χ^2 in any region
 - ° 23500±330 signal events
- Main background
 - Misreconstructed $B^{\pm 0} \rightarrow D^{*\pm 0} e \nu$ decays
 - $\circ \square B \rightarrow De\nu \text{ decays}$
 - Combinatorial D^{*0}
 - Other BG peaking in Δm : D^{**} , $D^{*0}e$ from different B mesons
- Main systematic uncertainties • π^0 reconstruction efficiency • $\mathcal{B}(D^{*0} \rightarrow D^0 \pi^0)$ • $R_1(1)$ and $R_2(1)$ for ρ^2_{A1}

• Results for $B^- \rightarrow D^{*0} e^- \overline{v}$

••• Measurement of $B \rightarrow D^{(*)} \tau \nu$

- New physics accessible at tree level
- BFs calculated precisely

Decay Mode	$\mathcal{B}(\%)$
$\overline{B}{}^0 \to D^+ \tau^- \overline{\nu}_{\tau}$	0.69 ± 0.04
$\overline{B}{}^0 \to D^{*+} \tau^- \overline{\nu}_{\tau}$	1.41 ± 0.07
$B \to X_c \tau^- \overline{\nu}_{\tau}$	2.3 ± 0.25

Chen, Geng, JHEP **0610**, 053 (2006) Falk et al., PLB **326**,145 (1994)

- Though BFs are large: Challenge
- Results for inclusive decays from 3 LEP experiments (PDG): $\mathcal{B}(b \to X\tau^- \overline{\nu}_{\tau}) = (2.48 \pm 0.26)\%$ • Preliminary observation of $B^0 \to D^{*-} \tau \nu$ by Belle: $\mathcal{B}(B^0 \to D^{*-} \tau^+ \nu_{\tau}) = (2.02^{+0.40}_{-0.37} \pm 0.37)\%$ Belle, arXiv:0706.4429 [hep-ex] (2007)

• Measure four channels relative to decays with e/μ $\Rightarrow B^- \rightarrow D^0/D^{*0}\tau^-\overline{\nu}_{\tau}$ $\Rightarrow \overline{B}^0 \rightarrow D^+/D^{*+}\tau^-\overline{\nu}_{\tau}$ $B \rightarrow D\tau\nu$ yields more sensitivity to New Physics

BaBar

Reconstruction of $B \rightarrow D^{(*)} \tau \nu$

- $E_{\rm extra}$ < 150-300 MeV (sum of additional photons); no additional charged tracks
- Requirements on $p_{
 m miss}$ and q^2
- Sensitivity in $m^2_{
 m miss}$ = $[p_{
 m Y(4S)}$ $p_{
 m tag}$ - $p_{
 m D(*)}$ - $p_{
 m l}]^2$

3 neutrinos result in $m^2_{
m miss}$ ~ 2-8 ${
m GeV^2}/c^4$

- Main background from
 - $D^*e(\mu)\nu \rightarrow$ peaks near zero in m^2_{miss}
 - $D^{**} e(\mu) \nu \rightarrow \text{accumulates in signal region}$
 - ullet decays with a lost π^0 and u
 - + construction of D^{**} control samples by adding a π^0
 - used to constrain D^{**} background in signal region

[•] Full event reconstruction allows use of $B_{\rm reco}$ - $D^{(*)}$ flavor correlation

Measurement of $B \rightarrow D^{(*)} \tau \nu$

- Discriminating variables: m_{miss}^2 and p_l
- Perform extended unbinned maximum likelihood fit in eight reconstruction channels
 - Four signal channels + four D^{**} control samples
 - 18 free parameters in the fit (16 event yields for signal & BG, 2 crossfeed constraints)
 - Extract simultaneously yields of $D\tau\nu/D^*\tau\nu/D\ell\nu/D^*\ell\nu/D^{**}\ell\nu$

used for normalization for $R = \frac{\mathcal{B}(B \to D^{(*)} \tau \nu)}{\mathcal{B}(B \to D^{(*)} \ell \nu)} \qquad \ell = e \text{ or } \mu$

• also combined fit with: $R(B^0) = R(B^+) \rightarrow \text{isospin symmetry}$

Main systematic uncertainties:

Parametrization of PDFs and crossfeed constraints

Composition of combinatorial background

First Evidence for $B \rightarrow D\tau \nu$ BABAR, arXiv:0707.2758 [hep-ex] (2007)

Verena Klose - TU Dresden

Summary

Backup Slides

PEP-II and BABAR

Large Set of Hadronic Moments

Mass moments $< m_X^k >$ for k=1,...,6, p_{I,min} =0.8....1.9 GeV/c

Mixed moments $<(n_X^2)^k>$ for k=1,2,3, p_{I,min} =0.8...1.9 GeV/c

Hadronic Moments – Verification

Extraction method uses inclusive b→clν mixture
Verification on MC simulations with exclusive final states

Systematic Uncertainties Moments

k=1

$p_{l,min}$	$\langle m_X^k \rangle$	σ_{stat}	σ_{sys}	Signal Model	$\mathcal{C}_{ ext{calib}}$	BG subtr.	Detector	Stability
0.8	2.0958	± 0.0083	± 0.0121	0.0045	0.0042	0.0044	0.0095	0.0000
0.9	2.0920	± 0.0075	± 0.0107	0.0039	0.0040	0.0042	0.0082	0.0000
1.0	2.0872	± 0.0072	± 0.0099	0.0038	0.0041	0.0041	0.0070	0.0009
1.1	2.0796	± 0.0072	± 0.0093	0.0036	0.0035	0.0041	0.0066	0.0000
1.2	2.0717	± 0.0075	± 0.0104	0.0035	0.0047	0.0043	0.0067	0.0032
1.3	2.0661	± 0.0078	± 0.0128	0.0032	0.0054	0.0045	0.0067	0.0077
1.4	2.0583	± 0.0081	± 0.0128	0.0028	0.0059	0.0048	0.0065	0.0075
1.5	2.0518	± 0.0080	± 0.0121	0.0025	0.0063	0.0053	0.0071	0.0045
1.6	2.0433	± 0.0089	± 0.0128	0.0025	0.0077	0.0060	0.0079	0.0000
1.7	2.0378	± 0.0105	± 0.0162	0.0024	0.0075	0.0073	0.0080	0.0091
1.8	2.0379	± 0.0139	± 0.0168	0.0025	0.0070	0.0089	0.0096	0.0075
1.9	2.0350	± 0.0179	± 0.0225	0.0020	0.0098	0.0121	0.0121	0.0107

• main systematic uncertainty:

• neutral selection efficiency \rightarrow impact on full event rec.

 $b \rightarrow u l \nu$ background at high cuts on $p_{l,min}$

BaBar

Data - HQE Comparison mass moments

Results from HQE Fit

presented fit fit without $b \rightarrow s\gamma$

	$ V_{cb} \times 10^3$	$m_b \left[\text{GeV}/c^2 \right]$	$m_c \left[\text{GeV}/c^2 \right]$	$\mathcal{B}[\%]$	$\mu_{\pi}^2 \left[\text{GeV}^2 \right]$	$\mu_G^2 \left[\text{GeV}^2 \right]$	$ ho_D^3 \left[\text{GeV}^3 \right]$	$ ho_{LS}^3 \left[{ m GeV}^3 ight]$
Results	41.88	4.552	1.070	10.597	0.471	0.330	0.220	-0.159
Δ_{exp}	0.44	0.038	0.055	0.171	0.034	0.042	0.021	0.081
Δ_{theo}	0.35	0.040	0.065	0.053	0.062	0.043	0.042	0.050
$\Delta_{\Gamma_{SL}}$	0.59							
Δ_{tot}	0.81	0.055	0.085	0.179	0.070	0.060	0.047	0.095
$ V_{cb} $	1.00	-0.42	-0.27	0.75	0.42	-0.28	0.25	0.10
m_b		1.00	0.96	0.09	-0.56	-0.07	-0.38	-0.24
m_c			1.00	0.15	-0.63	-0.32	-0.51	-0.15
\mathcal{B}				1.00	0.09	-0.10	0.02	-0.04
μ_{π}^2					1.00	0.40	0.87	0.10
μ_G^2						1.00	0.41	-0.05
ρ_D^3							1.00	-0.21
$ ho_{LS}^3$								1.00

Systematic Uncertainties $B^- \rightarrow D^{*0} e \nu$

prelim	ninary	$\Delta V/V$	$\Delta\rho^2/\rho^2$	$\Delta \mathcal{B}/\mathcal{B}$
	tracking efficiency (ϵ_{tr})	1.2	-	2.4
	p_T dependence of $\epsilon_{\rm tr}$	0.3	0.5	0.2
_	particle ID efficiency	0.9	2.0	1.6
	extrapolated π^0 efficiency (ϵ_{π^0})	1.8	-	3.6
	p_{π^0} dependence of ϵ_{π^0}	1.0	3.5	0.4
	Δm shape of D^{**} background	0.1	0.1	0.2
	shape parameters	1.0	2.5	0.6
	number of $B\overline{B}$ events	0.6	-	1.1
	off-peak luminosity	0.1	0.4	< 0.1
_	total internal	2.8	4.8	4.8
	$R_1(1)$ and $R_2(1)$	0.1	4.7	0.3
	$\mathcal{B}(\Upsilon(4S) \to B^+B^-)$	0.8	-	1.6
[$\mathcal{B}\left(D^{*0} \to D^0 \pi^0\right)$	2.3	-	4.7
	$\mathcal{B}\left(D^0 \to K^- \pi^+\right)$	0.9	-	1.8
	B^{-} life time	0.3	-	-
	D^{**} decay fractions	0.3	0.7	0.3
	number of D^{*0} in $c\overline{c}$ events	0.2	0.7	< 0.1
	total external	2.6	4.8	5.3
	total	3.9	6.8	7.2

Comparison Inclusive vs. Exclusive V_{cb}

Detailed Results for $B \rightarrow D^{(*)} \tau \nu$

pr	elim	inary					
	Mod	e	$N_{ m sig}$	$N_{ m norm}$	$\varepsilon_{\rm sig}/\varepsilon_{\rm norm}$	$(\Delta R/R)_{\rm fit}$	$(\Delta R/R)_{\varepsilon}$
			U		0,	[%]	[%]
	B^-	$ ightarrow D^0 au^- \overline{ u}_ au$	$33.1 {\pm} 19.6$	$346.7 {\pm} 23.0$	1.85	15.2	1.5
exclusive	B^-	$\rightarrow D^{*0} \tau^- \overline{\nu}_{\tau}$	$95.9{\pm}19.8$	$1628.6 {\pm} 63.5$	0.98	9.4	1.4
channels	$\overline{B}{}^{0}$	$\rightarrow D^+ \tau^- \overline{\nu}_{\tau}$	$23.0{\pm}7.9$	$149.9 {\pm} 13.3$	1.83	13.4	1.7
	$\overline{B}{}^{0}$	$\rightarrow D^{*+} \tau^- \overline{\nu}_{\tau}$	16.2 ± 7.3	$481.8 {\pm} 25.5$	0.93	3.4	1.5
combined	B	$\rightarrow D \tau^- \overline{\nu}_{\tau}$	$64.9{\pm}19.1$	496.3 ± 26.4	1.85	12.0	1.3
fit	B	$\rightarrow D^* \tau^- \overline{\nu}_{\tau}$	105.3 ± 19.4	$2109.4{\pm}68.0$	0.93	5.7	1.2
-							
-	Mode	e	R		B	$\sigma_{ m tot}$ Fig	st .
-	Mode	e	R $[%]$	[[B %]	$\sigma_{ m tot}$ Fig $(\sigma_{ m stat})$ Ob	st pservation $\mathbb{R}^{+} \rightarrow \mathbb{D}^{*0} \tau \nu$
-	Mode B^-	$\stackrel{e}{\longrightarrow} D^0 \tau^- \overline{\nu}_{\tau}$	R [%] 29.5±17.4±4	$1.5 0.63 \pm 0.38$	\mathcal{B} %] ±0.10±0.06	$\sigma_{ m tot}$ Fig $(\sigma_{ m stat})$ Ob 1.7(1.7) of	st servation B ⁻ →D ^{*0} τν
exclusive	Mode $B^ B^-$	e $\rightarrow D^0 \tau^- \overline{\nu}_{\tau}$ $\rightarrow D^{*0} \tau^- \overline{\nu}_{\tau}$	$\begin{array}{c} R \\ [\%] \\ 29.5 \pm 17.4 \pm 4 \\ 36.2 \pm 7.5 \pm 3 \end{array}$	$\begin{bmatrix} 1.5 & 0.63 \pm 0.38 \\ 3.4 & 2.35 \pm 0.49 \end{bmatrix}$	$\mathcal{B} \ \%] \ \pm 0.10 \pm 0.06 \ \pm 0.22 \pm 0.18$	$\begin{array}{c c} \sigma_{\rm tot} & {\rm Fir}\\ (\sigma_{\rm stat}) & {\rm Ob}\\ 1.7(1.7) & {\rm of}\\ 5.3(5.8) & {\rm c}\end{array}$	st servation B ⁻ →D ^{*0} τν
exclusive channels	Mode B^- B^- \overline{B}^0	e $ \rightarrow D^0 \tau^- \overline{\nu}_{\tau} \rightarrow D^{*0} \tau^- \overline{\nu}_{\tau} \rightarrow D^+ \tau^- \overline{\nu}_{\tau} $	$R \\ [\%] \\ 29.5 \pm 17.4 \pm 4 \\ 36.2 \pm 7.5 \pm 3 \\ 48.6 \pm 16.7 \pm 6 \\ \end{array}$	$\begin{bmatrix} 1.5 & 0.63 \pm 0.38 \\ 3.4 & 2.35 \pm 0.49 \\ 3.6 & 1.03 \pm 0.35 \end{bmatrix}$	\mathcal{B} $\pm 0.10 \pm 0.06$ $\pm 0.22 \pm 0.18$ $\pm 0.14 \pm 0.10$	$\begin{array}{c c} \sigma_{\rm tot} & {\rm Fir}\\ (\sigma_{\rm stat}) & {\rm Ob}\\ 1.7(1.7) & {\rm of}\\ 5.3(5.8) & \\ 3.3(3.5) & \end{array}$	st servation B ⁻ →D ^{*0} τν
exclusive channels	Mode B^- \overline{B}^0 \overline{B}^0	e $ \rightarrow D^{0}\tau^{-}\overline{\nu}_{\tau} $ $ \rightarrow D^{*0}\tau^{-}\overline{\nu}_{\tau} $ $ \rightarrow D^{+}\tau^{-}\overline{\nu}_{\tau} $ $ \rightarrow D^{*+}\tau^{-}\overline{\nu}_{\tau} $	$\begin{array}{c} R \\ [\%] \\ 29.5 \pm 17.4 \pm 4 \\ 36.2 \pm 7.5 \pm 3 \\ 48.6 \pm 16.7 \pm 6 \\ 21.4 \pm 9.7 \pm 6 \end{array}$	$\begin{bmatrix} 0 \\ 1.5 & 0.63 \pm 0.38 \\ 3.4 & 2.35 \pm 0.49 \\ 5.6 & 1.03 \pm 0.35 \\ 0.8 & 1.15 \pm 0.52 \end{bmatrix}$	\mathcal{B} $\pm 0.10 \pm 0.06$ $\pm 0.22 \pm 0.18$ $\pm 0.14 \pm 0.10$ $\pm 0.04 \pm 0.04$	$\begin{array}{c c} \sigma_{\rm tot} & {\rm Fir}\\ (\sigma_{\rm stat}) & {\rm Ob}\\ 1.7(1.7) & {\rm of}\\ 5.3(5.8) & \\ 3.3(3.5) & \\ 2.7(2.7) & \end{array}$	st servation B ⁻ →D ^{*0} τν
exclusive channels combin <u>ed</u>	Mode B^- \overline{B}^0 \overline{B}^0 B	e $ \rightarrow D^{0}\tau^{-}\overline{\nu}_{\tau} $ $ \rightarrow D^{*0}\tau^{-}\overline{\nu}_{\tau} $ $ \rightarrow D^{+}\tau^{-}\overline{\nu}_{\tau} $ $ \rightarrow D^{*+}\tau^{-}\overline{\nu}_{\tau} $ $ \rightarrow D\tau^{-}\overline{\nu}_{\tau} $	R [%] 29.5 \pm 17.4 \pm 4 36.2 \pm 7.5 \pm 3 48.6 \pm 16.7 \pm 6 21.4 \pm 9.7 \pm 0 40.7 \pm 12.0 \pm 4	$\begin{bmatrix} 0 \\ 1.5 & 0.63 \pm 0.38 \\ 3.4 & 2.35 \pm 0.49 \\ 5.6 & 1.03 \pm 0.35 \\ 0.8 & 1.15 \pm 0.52 \\ 1.9 & 0.90 \pm 0.26 \end{bmatrix}$	\mathcal{B} $\pm 0.10 \pm 0.06$ $\pm 0.22 \pm 0.18$ $\pm 0.14 \pm 0.10$ $\pm 0.04 \pm 0.04$ $\pm 0.11 \pm 0.06$	$\begin{array}{c c} \sigma_{\rm tot} & {\rm Fir}\\ (\sigma_{\rm stat}) & {\rm Ob}\\ 1.7(1.7) & {\rm of}\\ 5.3(5.8) & \\ 3.3(3.5) & \\ 2.7(2.7) & \\ 3.5(3.8) & \\ \end{array}$	st servation B ⁻ →D ^{*0} τν
exclusive channels combined fit	Mode B^- \overline{B}^0 \overline{B}^0 B B	e $ \rightarrow D^{0}\tau^{-}\overline{\nu}_{\tau} $ $ \rightarrow D^{*0}\tau^{-}\overline{\nu}_{\tau} $ $ \rightarrow D^{+}\tau^{-}\overline{\nu}_{\tau} $ $ \rightarrow D^{*+}\tau^{-}\overline{\nu}_{\tau} $ $ \rightarrow D\tau^{-}\overline{\nu}_{\tau} $ $ \rightarrow D^{*}\tau^{-}\overline{\nu}_{\tau} $	R [%] 29.5 \pm 17.4 \pm 4 36.2 \pm 7.5 \pm 3 48.6 \pm 16.7 \pm 6 21.4 \pm 9.7 \pm 0 40.7 \pm 12.0 \pm 4 31.0 \pm 5.7 \pm 1	$\begin{bmatrix} 0 \\ 4.5 & 0.63 \pm 0.38 \\ 3.4 & 2.35 \pm 0.49 \\ 5.6 & 1.03 \pm 0.35 \\ 0.8 & 1.15 \pm 0.52 \\ 4.9 & 0.90 \pm 0.26 \\ 1.8 & 1.81 \pm 0.33 \end{bmatrix}$	$\mathcal{B} \\ \pm 0.10 \pm 0.06 \\ \pm 0.22 \pm 0.18 \\ \pm 0.14 \pm 0.10 \\ \pm 0.04 \pm 0.04 \\ \pm 0.11 \pm 0.06 \\ \pm 0.11 \pm 0.06$	$\begin{array}{c c} \sigma_{\rm tot} & {\rm Fir}\\ (\sigma_{\rm stat}) & {\rm Ob}\\ 1.7(1.7) & {\rm of}\\ 5.3(5.8) & \\ 3.3(3.5) & \\ 2.7(2.7) & \\ 3.5(3.8) & \\ 6.2(6.5) & {\rm Fir}\\ \end{array}$	st servation $B^- \rightarrow D^{*0} \tau \nu$ st Evidence

Fit Projections Lepton Momentum

Fit Projections Lepton Momentum

cut on m²_{miss} < 1 GeV²/c⁴, projections for constrained fit

New Physics Expectations

