Evaluation of $a_{\mu}^{\pi\pi}$ between 0.35 and 0.95 GeV² with data from the KLOE detector

Stefan E. Müller Laboratori Nazionali di Frascati

(for the KLOE collaboration)

2007 Europhysics Conference on High Energy Physics Manchester, 19-25 July 2007

- $\bullet \, \mathsf{E}_{\mathsf{cut}}$ is the threshold energy above which pQCD is applicable
- s is the c.m.-energy squared of the hadronic system
- K(s) is a monotonous function that goes with 1/s, enhancing low energy contributions of σ^{hadr}(s)

$\sigma(e^+e^- \rightarrow \pi^+\pi^-)$ with ISR:

Particle factories have the opportunity to measure the cross section $\sigma(e^+ e^- \rightarrow hadrons)$ as a function of the hadronic c.m. energy M _{hadr} by using the <u>radiative return</u>:

Neglecting FSR effects:

 $M^{2}_{hadr} \frac{d\sigma(e^{+} e^{-} \rightarrow hadrons + \gamma)}{dM^{2}_{hadr}} = \sigma(e^{+} e^{-} \rightarrow hadrons) H(M^{2}_{hadr})$

This method is a **complementary approach** to the standard energy scan.

Requires precise calculations of the radiator H

→ EVA + PHOKHARA MC Generator

(S. Binner, J.H. Kühn, K. Melnikov, Phys. Lett. B 459, 1999)

(H. Czyż, A. Grzelińska, J.H. Kühn, G. Rodrigo, Eur. Phys. J. C 27, 2003)

KLOE Detector

Driftchamber

 $\sigma_p/p = 0.4\%$ (for 90⁰ tracks) $\sigma_{xy} \approx 150 \ \mu m, \ \sigma_z \approx 2 \ mm$ *Excellent momentum resolution*

KLOE Detector

Electromagnetic Calorimeter

Event Selection

Pion tracks at large angles $50^{\circ} < \theta_{\pi} < 130^{\circ}$

a) Photons at small angles

 $\theta_{\gamma} < 15^{\circ} \text{ or } \theta_{\gamma} > 165^{\circ}$

➔ No photon detection!

$$\vec{p}_{\gamma} = \vec{p}_{\text{miss}} = -(\vec{p}_+ + \vec{p}_-)$$

- High statistics for ISR photons
- Very small contribution from FSR
- Reduced background contamination

Event Selection

Pion tracks at large angles $50^{\circ} < \theta_{\pi} < 130^{\circ}$

a) Photons at small angles

 $\theta_{\gamma} < 15^{\circ} \text{ or } \theta_{\gamma} > 165^{\circ}$

➔ No photon detection!

$$\vec{p}_{\gamma}=\vec{p}_{\rm miss}=-(\vec{p}_++\vec{p}_-)$$

- High statistics for ISR photons
- Very small contribution from FSR
- Reduced background contamination

b) Photons at large angles

 $50^{\circ} < \theta_{\gamma} < 130^{\circ}$

Photon is observed in the detector!

- Threshold region accessible
- Increased contribution from FSR
- Contribution from $\phi \rightarrow f_0(980)\gamma \rightarrow \pi^+ \pi^- \gamma$

Event selection

• Experimental challenge: Fight background from

$$\begin{array}{l} -\phi \rightarrow \pi^{+}\pi^{-}\pi^{0} \\ -e^{+}e^{-} \rightarrow e^{+}e^{-} \ \gamma(\gamma) \\ -e^{+}e^{-} \rightarrow \mu^{+}\mu^{-} \ \gamma(\gamma), \end{array}$$

separated by means of kinematical cuts in *trackmass* M_{Trk} (defined by 4-momentum conservation under the hypothesis of 2 tracks with equal mass and one photon)

$$\left[\left(\sqrt{s} - \sqrt{p_1^2 + M_{trk}^2} - \sqrt{p_2^2 + M_{trk}^2}\right)^2 - (p_1 + p_2)^2 = 0\right]$$

and *Missing Mass* M_{miss} (defined by 4-momentum conservation under the hypothesis of $e^+e^- \rightarrow \pi^+\pi^- X$

$$M_{\rm miss} = \sqrt{E_{\rm X}^2 - p_{\rm X}^2}$$

 M_{Trk} (MeV)

To further clean the samples from radiative Bhabha events, a particle ID estimator for each charged track based on Calorimeter Information and Time-of-Flight is used.

Published result with 2001 data

Published KLOE Result:

Phys. Lett. B606 (2005) 12

Improvements/updates with respect to 2001:

30% cosmic veto inefficiency recovered in 2002 by introducing additional software trigger level

Improved offline-event filter reduces its systematic uncertainty to <0.1%

New generator BABAYAGA@NLO theoretical error of Bhabha reference cross section goes from 0.5% to 0.1% -Bhabha cross section value is lowered by 0.7%

Trigger efficiency correction had to be updated due to a doublecounting of efficiencies.

Trigger 2001 update

Impact of update on trigger correction on 2001 cross section:

Changes published value on $a_{\mu}^{\pi\pi}$ by 0.4%

Small angle analysis 2002

Luminosity:

A LOS KLOK

At KLOE, Luminosity is measured using "Large angle Bhabha" events (55°< θ_e <125°) → KLOE is its own Luminosity Monitor!

$$\int \mathcal{L} \, \mathrm{d}t = \frac{N_{obs} - N_{bkg}}{\sigma_{eff}}$$

The luminosity is given by the number of Bhabha events divided for an effective cross section obtained by folding the theory with the detector simulation.

Generator used for Bhabha cross section:

-BABAYAGA (Pavia group):

 $\sigma_{\rm eff}$ = (428.0±0.3_{stat}) nb

C. M. Calame et al., Nucl. Phys. B758 (2006) 227

New version of generator gives 0.7% decrease in cross section compared to previous version

Quoted accuracy: 0.1%

Systematics on Luminosity	
Theory	0.10 %
Acceptance	0.25 %
Background $(\pi\pi\gamma)$	0.08 %
Tracking+Clustering	0.13 %
Energy Calibration	0.10 %
Knowledge of √s run-by-run	0.10 %
TOTAL 0.10 % theo \oplus 0.32% exp = 0.34 %	

Radiative corrections

Radiator-Function H(s) (ISR):

- ISR-Process calculated at NLO-level *PHOKHARA* generator (*Czyż*, *Kühn et.al*) **Precision:** 0.5% $M_{\pi\pi}^2 \frac{d\sigma_{\pi\pi\gamma}}{dM_{\pi\pi}^2} = \sigma_{\pi\pi}(s) \times \mathbf{H(s)}$

Radiative Corrections:

- i) Bare Cross Section divide by Vacuum Polarisation

 - ➔ from F. Jegerlehner: http://www-com.physik.hu-berlin.de/~fjeger/
- ii) FSR Corrections

Cross section $\sigma_{\pi\pi}$ must be incl. for FSR

FSR corrections have to be taken into account in the efficiency eval. (small angle acceptance, M_{Trk}) and in the passage $M^2_{\pi\pi} \rightarrow M^2_{\gamma*}$

Small angle result from 2002 data:

	pt
Offline Filter	negligible
Background	0.3%
Trackmass/Miss. Mass	0.2% (prelim)
π/e-ID	0.3%
Vertex	0.5%
Tracking	0.4%
Trigger	0.2%
Acceptance (θ_{π})	negligible
$M_{\pi\pi}^2 \rightarrow M_{\gamma*} (FSR \text{ corr.})$	0.3% (prelim)
Software Trigger	0.1 %
Luminosity	0.3%
Acceptance (θ_{Miss})	0.1%
Radiator H	0.5%
Vacuum polarization	negligible

Jon River

Comparison 2001-2002:

Evaluating $a_{\mu}^{\pi\pi}$ with small angle

Dispersion integral for 2π -channel in energy interval 0.35 < $M_{\pi\pi}^2$ <0.95 GeV²

$$a_{\mu}^{\pi\pi} = 1/4\pi^{3} \int_{0.35 \text{GeV}^{2}}^{0.95 \text{GeV}^{2}} \sigma(e^{+}e^{-} \to \pi^{+}\pi^{-}) K(s)$$

2001 published result (Phys. Lett. B606 (2005) 12):

```
a_{\mu}^{\pi\pi}(0.35-0.95GeV<sup>2</sup>) = (388.7 ± 0.8<sub>stat</sub>±4.9<sub>syst</sub>) · 10<sup>-10</sup>
```

Applying update for trigger eff. and change in Bhabha-cross section used for luminosity evaluation:

$$a_{\mu}^{\pi\pi}$$
(0.35-0.95GeV²) = (384.4 ± 0.8_{stat}±4.9_{syst}) · 10⁻¹⁰

2002 preliminary:

Large angle analysis:

Preliminary!!! 18000 240 pb⁻¹ ✓ important cross check with small 2002 Data GeV² 16000 angle analysis 14000 ✓ threshold region is accessible Nr. of events / 0.01 ✓ photon is detected 12000 (4-momentum constraints) 10000 8000 ✓ lower signal statistics ✓ **FSR** not negligible anymore 6000 \checkmark large $\phi \rightarrow \pi^+\pi^-\pi^0$ background 4000 \checkmark irreducible bkg. from ϕ decays 2000 0.2 0.3 0.5 0.6 0.9 0.1 0.4 0.6 0.7 $M_{\pi\pi}^{2}$ [GeV²] π Φ φ, ρ π & &

Threshold region non-trivial

due to irreducible FSR-effects, to be estimated from MC using phenomenological models (interference effects unknown)

Large angle analysis (cont'd):

Apply dedicated selection cuts:

- Exploit kinematic closure of the event
- → Cut on angle Ω btw. ISR-photon and missing momentum

- Kinematic fit in $\pi^+\pi^-\pi^0$ hypothesis using 4-momentum and π^0 -mass as constraints
- FSR contribution added back to cross section (estimated from PHOKHARA generator)
- Reducible background from $\pi^+\pi^-\pi^0$ and $\mu^+\mu^-\gamma$ well simulated by MC

• Model dependence of irreducible background from $\phi \rightarrow f_{0\gamma} \rightarrow \pi^+\pi^-\gamma$ is the dominating uncertainty. Estimated using different models for f_0 -decay and input from dedicated KLOE $\phi \rightarrow f_{0\gamma}$ analyses (with f_0 decaying to charged and neutral pions).

Preliminary!!!

Comparison SA-LA 2002: R Preliminary!!! 1400 (qu) **KLOE 2002 SA** 1200 **KLOE 2002 LA** $(\sigma_{LA} - \sigma_{SA}) / \sigma_{SA}$ Range of comparison stat.+svst 1000 error 0.1 800 0.05 600 0 -0.05 400 -0.1 200 Range of comparison -0.15 $M^2_{\pi\pi}$ (GeV² 0 0.2 0.3 0.4 0.5 0.6 0.8 0.9 -0.2^上 0.1 0.7 0.4 0.5 0.6 0.7 0.8 0.9 $M^2_{\pi\pi}$ (GeV²) $a_{\mu}^{\pi\pi}$ between 0.5 - 0.85 GeV²:

Small angle:

$$a_{\mu}^{\pi\pi}(0.50-0.85\text{GeV}^2) =$$

(255.4 ± 0.4_{stat} ± 2.5_{syst}) · 10⁻¹⁰

Large angle: $a_{\mu}^{\pi\pi}(0.50-0.85 \text{GeV}^2) =$ (252.5 ± 0.6_{stat} ± 5.1_{syst}) · 10⁻¹⁰

(60% of systematical error due to f_0 -uncertainty)

$a_{\mu}^{\pi\pi}$ Summary:

Comparison with $a_{\mu}^{\pi\pi}$ from CMD2 and SND in the range 0.630-0.958 GeV : Phys. Lett. B648 (2007) 28

We have obtained $a_{\mu}^{\pi\pi}$ in the range between 0.35 - 0.95 GeV² using cross section data obtained via the radiative return with photon emission at small angles.

• The preliminary result from 2002 data agrees with the updated result from the published KLOE analysis based on 2001 data

Data from an independent and complementary KLOE measurement (*Large angle analysis*) of the 2π -cross section has been used to obtain $a_{\mu}^{\pi\pi}$ in the range between 0.5 - 0.85 GeV²

• All three KLOE results are in good agreement

KLOE results also agree with recent results on $a_{\mu}^{\pi\pi}$ from the CMD2 and SND experiments at VEPP-2M in Novosibirsk

Outlook:

- Refine the small angle analysis by unfolding for detector resolution, evaluating further possible backgrounds, etc.
- Continue evaluation of resonance contributions in the large angle analysis
- Measure the pion form factor via bin-by-bin ratios of pions over muons (Normalization to muons instead of absolute normalization with Bhabhas)
- Obtain pion form factor from data taken at \sqrt{s} = 1000 MeV (outside the ϕ resonance)
 - suppression of background from ϕ -decays
 - determination of f₀-parameters