

|V_{ub}| measurements at BaBar

Sylvie Brunet Université de Montréal, Canada

On Behalf of the BaBar Collaboration

Europhysics Conference on High Energy Physics (EPS-HEP2007) Manchester, England, 19-25 July 2007

- **@** Introduction to the CKM matrix and $|V_{ub}|$
- **(a)** $|V_{ub}|$ using $b \rightarrow u \ell v$ semileptonic decays
- **@** Inclusive measurements of $|V_{ub}|$ at BaBar
- **@** Exclusive measurements of |V_{ub}| at BaBar
- State of the art & Conclusions

Introduction

- The Standard Model describes particles and forces in a simple and elegant way but...
 - Does not answer everything, incomplete...
 - Contains free parameters (not predicted by theory)

Important to measure these free parameters to (over) constrain the SM. Inconsistencies can be sign of new physics.

Example of free parameters: The Cabibbo-Kobayashi-Maskawa (CKM) quark mixing matrix

Coupling between the quarks and weak charged currents

 $\begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$

Introduction

By construction, CKM matrix is unitary

• One of the unitarity conditions is:

$$V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$$

One common way to represent this condition is the Unitarity Triangle:

 "Ultimate" goal: measure precisely the sides and the angles of the Unitarity Triangle.
 If inconsistencies found: sign of new physics

We can use B mesons to measure them (at BaBar we have millions of them!) 4

- Inclusive measurements of |V_{ub}| at BaBar
- Exclusive measurements of |V_{ub}| at BaBar
- State of the art & Conclusions

|V_{ub}| measurements at BaBar

×

• We use two main experimental approaches:

@ <u>Similar:</u>

need input from theory to describe the QCD part (biggest error)
A have to face high b \rightarrow clnu backgrounds (50x more abundant)

Complementary:

 Description of the QCD part from theory comes from independent calculations
 Analysis techniques different

@ State of the art & Conclusions

Vub with the <u>inclusive</u> approach

Inclusive approach : Do not specify the final hadron Xu (take the sum)

Measure partial branching fractions (in a limited part of the spectrum)
 Use theory to get full spectrum & |V_{ub}|

Best precision so far on $|V_{ub}| \sim 7\%$

All BaBar inclusive Bà Xu l nu results

- Tagged M_X: *PRL* **92**, 071802 (2004)
- Untagged E_e-q²: *PRL* **95**, 111801 (2005)
- Tagged M_X-q²: hep-ex/0507017 (preliminary, LP 2005)
- Untagged lepton endpoint: PRD 73, 012006 (2006)
- Untagged lepton endpoint reinterpretation: hep-ph/0702072
 Talk!
- Tagged "SF free" (M_X): *PRL 96, 221801 (2006)*

***** More to come for Lepton-Photon!*****

This

1) Untagged Lepton Endpoint

Best result: electrons with 2.0 $< p_1 < 2.6$ GeV

Measured electron spectrum AB(10⁻³)/(50 MeV/c) $b \rightarrow u \ell v$ 0.1 MC signal data 0.05 2.2 2.5 2.6 2.1 2.4 2.723 Electron Momentum (GeV/c) $88 \times 10^6 B\overline{B}$ pairs

Uses inputs from other $b \rightarrow q$ analyses to describe the motion of the b-quark in the B meson ("Shape Function (SF)")

BR
$$(B \to X_u e \upsilon) = (2.27 \pm 0.26_{exp} \pm 0.33_{0.26SF}) \pm 0.17_{theo}) \times 10^{-3}$$

Extract $|V_{ub}|$ from BNLP calculations:

(Bosch-Lange-Neubert-Paz Nucl. Phys. B 699, 335, 2004)

$$|V_{ub}| = (4.44 \pm 0.25_{exp} \pm 0.42_{0.38\,SF} \pm 0.22_{theo}) \times 10^{-3}$$

V_{ub} with the <u>inclusive</u> approach

hep-ph/0702072 2) Lepton Endpoint : New interpretation, *with reduced SF dependence*

Possible to combine $b \rightarrow u \ell v$ and $b \rightarrow s \gamma$ so that the SF cancel

Decrease in theoretical error, increase in experimental error !

$$|V_{ub}| = (4.40 \pm 0.30_{exp} \pm 0.41_{b \to s\gamma}) \pm 0.23_{theo}) \times 10^{-3}$$
 (BNLP)

Comparison with previous page (using SF):

$$|V_{ub}| = (4.44 \pm 0.25_{exp} \pm 0.42_{0.38\,SF} \pm 0.22_{theo}) \times 10^{-3}$$

13

V_{ub} with the inclusive approach PRL 96, 221801 (2006) Tagged m_x with reduced SF dependence

 $b \rightarrow c$ $m_{X} = hadron system mass$

Hadronic Tags

- $\boldsymbol{\cdot}$ Search for X{v in the other B
- Subtract $X_c lv$ background

Before and after background subtraction ig_{yy}^{400} (a) $b \rightarrow u 1 v$ $b \rightarrow v 1 v$ $b \rightarrow c 1 v$ 100 (b) $b \rightarrow u 1 v$ $b \rightarrow u 1 v$ $b \rightarrow u 1 v$

 $m_{\rm x} [GeV/c^2]$

-10-

 $m_{\rm X} [{\rm GeV/c}^2]$

lepton

- Introduction to the CKM matrix and |V_{ub}|
- **(a)** $|V_{ub}|$ using $b \rightarrow u \ell v$ semileptonic decays
- **@** Inclusive measurements of $|V_{ub}|$ at BaBar

@ Exclusive measurements of |V_{ub}| at BaBar

State of the art & Conclusions

V_{ub} with the <u>exclusive</u> approach Exclusive Approach : Study a given Xu $B(B \to X_u \ell \nu)$ $|V_{ub}|$ Measure a specific branching fraction @ Get |Vub| with theoretical calculations of Form Factors $(FF=f_{+}(q^2))$ which parameterize the QCD effects. theoretical input $q^{2} = m_{W}^{2} = (\ell + \nu)^{2} = (B - \pi)^{2}$ Lattice QCD: hep-lat/0409116 Decay rate varies with q² (2004), PRD73, 074502 (2006) • $\pm 12\%$ for $q^2 > 16$ GeV² π⁻¹⁺v)/dq²/IV Light Cone Sum Rules: FF calculations valid for a PRD71, 014015 (2005) specific range of q^2 dB(B°-• $\pm 13\%$ for $q^2 < 16$ GeV² $decay^{10}$ rate vs $q^2 q^2 (GeV)$ **ISGW2:** PRD52, 2783 (1995) ±50%

• Experimentally:

We can measure partial BF in q² bins

To extract |V_{ub}| we use different theo. predictions for different q² intervals

We can also compare the experimental FF shape with theoretical ones

• (loose) untagged $B \rightarrow \pi \ell v$: *PRL* **98**, 091801 (2007)

***** More to come for Lepton-Photon!*****

18

PRL 97, 211801 (2006)

20

1) Tagged $B \rightarrow \pi^{0/+} \ell v$

PRL 97, 211801 (2006)

1) Tagged $B \rightarrow \pi^{0/+} \ell v$

 $BF(B \to \pi^+ \ell \nu) = (1.33 \pm 0.17_{stat} \pm 0.11_{syst}) \times 10^{-4}$

 $|V_{ub}|$ = (3.8 ± 0.4_{stat} ± 0.3_{syst} ± ^{0.7}_{0.4 theo}) × 10⁻³ (HPQCD)*

@ First published measurement of $B \rightarrow \pi \ell v$ using tags

When published:

- Overall precision comparable to the best published measurement
- Lowest systematic error

Very promising with increasing BaBar dataset and expected improvements from the theory side!!

* Value corrected following the HPQCD erratum: Erratum-ibid.D 75, 119906 (2007)

PRL 98, 091801 (2007)

2) Loose untagged $B \rightarrow \pi^+ \ell v$

- No Tag
- Neutrino reconstruction
- Innovation: No neutrino tight quality cuts (increase signal efficiency)
- 12 q² bins(!)

2) Loose untagged $B \rightarrow \pi^+ \ell \nu (II)^{PRL 98, 091801 (2007)}$

* Value corrected following the HPQCD erratum: Erratum-ibid.D 75, 119906 (2007)

- Introduction to the CKM matrix and |V_{ub}|
- **(a)** $|V_{ub}|$ using $b \rightarrow u \ell v$ semileptonic decays
- **@** Inclusive measurements of $|V_{ub}|$ at BaBar
- **@** Exclusive measurements of $|V_{ub}|$ at BaBar

@ State of the art & Conclusions

Present precision on $|V_{ub}|$

World Average

$ V_{ub} $ exclusive ($ V_{ub} $ exclusive ($ V_{ub} $ exclusive ((LCSR, $q^2 < 16 \ GeV^2$) (FNAL, $q^2 > 16 \ GeV^2$) (FNAL, full spectrum)	$(3.41 \pm 0.13_{exp} \pm 0.56_{theo}) \times 10^{-3} (3.55 \pm 0.22_{exp} \pm 0.61_{theo}) \times 10^{-3} (3.82 \pm 0.12_{exp} \pm 0.88_{theo}) \times 10^{-3}$	
$ V_{ub} $ inclusive ((BLNP)	$(4.52 \pm 0.19_{exp} \pm 0.27_{theo}) \times 10^{-3}$	
 The best precision on The best precision on The <u>exclusive</u> studies (σ~18%) are Vub comes from becoming more competitive (need more inclusive studies (σ~7%) precise calculations of FF) 			
• Global f	it: $\begin{vmatrix} V_{ub} \end{vmatrix}$ CKM Fitter $ V_{ub} $ UT Fit	$egin{aligned} (3.54\pm0.17) imes10^{-3}\ (3.44\pm0.16) imes10^{-3} \end{aligned}$	
Interesting puzz	zle:		
Exclusive $ V_{ub} $ Vs global fit, agrees well (though not precise enough to conclude) Inclusive $ V_{ub} $ Vs global fit, discrepancies at the ~2.60 level 24			

http://ckmfitter.in2p3.fr ICHEP 06

> Apex fit with the "sides" constraints only $|V_{ub}|:\sigma \sim 7\%$, $|V_{cb}|:\sigma \sim 1\%$, $|V_{td}|/|V_{ts}|:\sigma < 4\%$

Apex fit with all constraints β:σ<5%, α,γ not very precise yet

Summary & Conclusions

- We have reported recent inclusive and exclusive BaBar results on Vub (free parameter of the SM). Biggest challenges in these analyses come from the theoretical description of the QCD and abundant $B \rightarrow X_c \ell v$ background.
- We have examined the current precision achieved on $|V_{ub}|$ and the 0 Unitary Triangle. The precision on $|V_{ub}|$ is currently driven by inclusive measurements. The precision on the exclusive measurements should improve in the near future: important theoretical improvements are likely.
- There is an apparent discrepancy between the value of $|V_{ub}|$ from 0 inclusive measurements and that from global UT fit. Sign of something? Will disappear?

Important to pursue the measurements!

The End

---- BACKUP -----

SLAC: Stanford Linear Accelerator center

29

業

• SLAC: The Accelerator

BaBar: The Detector

BaBar: Data recorded so far

04/02/2007 10:24

Present precision on $|V_{ub}|$

The best precision on
 |Vub| comes from
 <u>inclusive</u> studies (σ ~7%)

• The <u>exclusive</u> studies (σ ~18%) are becoming more competitive (need more precise calculations of FF)

Exclusive measurements not enough precise to conclude...

... but seem lower than inclusive measurements...

History / Present precision on $BF(B \rightarrow \pi \ell v)$

Published results before the BaBar tag measurement				
Measurement	Method used	Results (x10 ⁻⁴)		
CLEO : PRL 77, 5000 (1996)	No tag, 1 q ² bin, pi^0 + pi^+ modes, 2.8x10 ⁶ BBbar pairs	$BF(B \rightarrow \pi^+ \ell \nu) = 1.8 \pm 0.4 \pm 0.4$		
CLEO : PRD 68, 073003 (2003)	No tag, 3 q^2 bins, pi ⁰ + pi ⁺ modes, 9.7x10 ⁶ BBbar pairs	$BF(B \rightarrow \pi^+ \ell \nu) = 1.33 \pm 0.18 \pm 0.13$		
BaBar , PRD 72, 051102 (2005)	No tag, 5 q ² bins, $pi^0 + pi^+$ modes, $83x10^6$ BBbar pairs	BF(B→π⁺ℓν)= 1.38 ± 0.10 ± 0.18		
Babar tag measurement				
BaBar: PRL 97, 211801 (2006)	Semileptonic tags, 3 q ² bins, 232x10 ⁶ BBbar pairs	Semileptonic Tags $BF(B \rightarrow \pi^+ \ell \nu) = 1.12 \pm 0.25 \pm 0.10$ $BF(B \rightarrow \pi^0 \ell \nu) = 0.73 \pm 0.18 \pm 0.08$ Hadronic Tags $BF(B \rightarrow \pi^+ \ell \nu) = 1.07 \pm 0.27 \pm 0.15$ $BF(B \rightarrow \pi^0 \ell \nu) = 0.82 \pm 0.22 \pm 0.11$ Combined $BF(B \rightarrow \pi^+ \ell \nu) = 1.33 \pm 0.17 \pm 0.11$		
 Other recent results (published/submitted) 				
Belle: PLB 648, 139 (2007)	Semileptonic tags, 3 q ² bins, no combination between modes, 275x10 ⁶ BBbar pairs	$\begin{aligned} BF(B {\to} \pi^+ \ell \nu) &= 1.38 \pm 0.19 \pm 0.14 \\ BF(B {\to} \pi^0 \ell \nu) &= 0.77 \pm 0.14 \pm 0.08 \end{aligned}$		
BaBar: PRL 98, 091801 (2007)	No tag, 12 q ² bins, pi ⁺ mode only, 227x10 ⁶ BBbar pairs	BF(B→π ⁺ ℓν)= 1.46 ± 0.07 ± 0.08		
CLEO: Submitted to PRD hep-ex/0703042	No tag, 4 q ² bins, pi ⁰ + pi ⁺ modes, $15.4x10^6$ BBbar pairs	BF(B→π ⁺ ℓν)= 1.37 ± 0.15 ± 0.11		