V_{ub} determination using $B \rightarrow \pi$ form factor from Light-Cone Sum Rules

Alexander Khodjamirian (Uni. Siegen, Germany)

"Flavour Physics and CP Violation", at EPS HEP2007, 19-25 July, Manchester

Outline

- minireview of exclusive $|V_{ub}|$ determinations, mainly $B \to \pi$
- new (preliminary) results on $f_{B\pi}^+(q^2)$ from LCSR

[G. Duplancić, A.K., Th. Mannel, B. Melić and N. Offen]

Exclusive $b \rightarrow u$ transitions sensitive to $|V_{ub}|$

		hodronia	
		nauronic	
Channel	$\mathrm{BR}{ imes}10^4$	input	theory
$B^{-} \sim \pi^{-} \overline{\mu}$	$1.70^{+0.56+0.39}$ [Pollo]	f_{-}	I attion $(2 \oplus 1)$
$D \rightarrow T \nu_{\tau}$	$1.79_{-0.49-0.46}$ [Dene]	JB	Lattice $(2 \oplus 1)$
	< 1.7(90% CL) [BaBar]		QCD SR
$\bar{B}^0 \to \pi^+ l^- \bar{\nu}_l$	$1.39 \pm 0.06 \pm 0.06$ [HFAG]	FF	Lattice $(2 \oplus 1)$.
C C	α^2 above [D-D-v]	f^{\pm} (2)	
	q ⁻ -snape [BaBar]	$J_{B\pi}^+(q^-)$	SCE1, LOSK
$\bar{B}^0 \to \rho^+ l^- \bar{\nu}_l$	$2.14 \pm 0.21 \pm 0.51 \pm 0.28$ [BaBar]	three	Lattice (quench.)
	$2.17 \pm 0.54 \pm 0.31 \pm 0.08$ [Belle]	FF's	LCSR("quench.")
$B^- \to l^- \bar{\nu}_l \gamma$	< 0.05 (90% CL) [BaBar]	two FF's	QCDF,LCSR
$B^- \to \pi^- \pi^0$	0.057 ± 0.004 [HFAG]	hadr.	input: $B \to \pi$ FF
		ampl.	QCDF, SCET

$B \rightarrow \pi$ form factor (FF)

• Hadronic matrix element:

 $\langle \pi^+(p)|\bar{u}\gamma_\mu b|\bar{B}^0(p+q)\rangle = f^+_{B\pi}(q^2)(2p_\mu + q_\mu) + \dots$

.... - the second FF $f^-(f^0)$ only in $B \to \pi \tau \nu_{\tau}$

• $B \to \pi \mu \nu_{\mu}, \pi e \nu_{e}$ region: $0 < q^{2} < (m_{B} - m_{\pi})^{2} = q_{max}^{2} \simeq 26.4 \text{ GeV}^{2}$

• differential decay distribution (neglecting m_l)

$$\frac{d\Gamma(\bar{B}^0 \to \pi^+ l^- \bar{\nu})}{dq^2} = \frac{G_F^2 |V_{ub}|^2}{24\pi^3} (E_\pi^2 - m_\pi^2)^{3/2} |f_{B\pi}^+(q^2)|^2$$

 $E_{\pi} = (m_B^2 + m_{\pi}^2 - q^2)/(2m_B)$ -pion energy in the B rest frame

Employing the analyticity of $f_{B\pi}^+(q^2)$

• $q^2 \Rightarrow$ complex variable, $f_{B\pi}^+(q^2) \Rightarrow$ analytic function, singularities (poles, branch points) given by unitarity relation (consult your favorite Quantum Field Theory textbook)

• $f_{B\pi}^+(q^2)$ real at $q^2 < m_{B^*}^2$, $m_{B^*}^2 > q_{max}^2$, pole at $q^2 = m_{B^*}^2$, branch points (and poles) at $q^2 > (m_B + m_\pi)^2$ (radial excitations of B^*)

• dispersion relation (derived from Cauchy theorem in q^2 -plane)

$$f_{B\pi}^+(q^2) = \frac{f_{B^*}g_{B^*B\pi}}{m_{B^*}^2 - q^2} + \frac{1}{\pi} \int_{(m_B + m_\pi)^2}^{\infty} ds \frac{\mathrm{Im}f_{B\pi}^+(s)}{s - q^2}$$

Employing the analyticity of $f_{B\pi}^+(q^2)$

• analyticity \oplus perturbative QCD bounds (unitarity for correlation function of heavy-light vector currents)

 \Rightarrow knowledge of $f^+_{B\pi}(q^2)~$ at a few points tightly bounds (\simeq reproduces) the FF at all $q^2 < q^2_{max}$

mathematical framework: [N. Meiman (1963)];..., applications to $B \rightarrow \pi$ FF: [C.G.Boyd, B.Grinstein, R.Lebed (1995)], L.Lellouch (1996)],..., [T.Becher, R.Hill (2006)],...

• Use of the relation between $f_{B\pi}(q^2)$ and the elastic phase of $\pi B \to \pi B$ strong scattering amplitude: [Muskhelishvili (1950)], [Omnes (1950's)], ... applications to $B \to \pi$ FF: [J. Flynn, J. Nieves (2001)]

• Practical use: FF parameterizations

Simplest parameterizations

• dispersion relation as a starting point, replace the integral by an effective pole:

$$[f_{B\pi}^+(q^2)]_{disp.rel} \Rightarrow \frac{r_1}{1 - q^2/m_{B^*}^2} + \frac{r_2}{1 - q^2/m_{B_{fit}}^2}$$

• BK parameterization [D.Becirevic, A.Kaidalov, 2000] (3 parameters $\rightarrow 2$, motivated by HQ limit)

$$[f_{B\pi}^+(q^2)]_{BK} = \frac{f_{B\pi}(0)}{(1 - q^2/m_{B^*}^2)(1 - \alpha q^2/m_{B^*}^2)}$$

• a generic 3-parameter two-pole parameterization: [P.Ball, R.Zwicky, 2004]

$$[f_{B\pi}^+(q^2)]_{BZ} = f_{B\pi}(0) \left(\frac{1}{1 - q^2/m_{B^*}^2} + \frac{rq^2/m_{B^*}^2}{(1 - q^2/m_{B^*}^2)(1 - \alpha_{BZ}q^2/m_{B^*}^2)} \right)$$

reduced to BK at $\alpha_{BZ} = r = \alpha_{BK}$

Advanced parameterizations

• BGL-parameterization [Boyd, Grinstein, Lebed]: a power expansion with $\sim 4, 5$ parameters

$$[f_{B\pi}^+(q^2)]_{BGL} = \frac{\sum_k a_k [z(q^2, q_0^2)]^k}{P(q^2, m_{B^*}^2)\phi(q^2, q_0^2)}$$

 $z<1,\,P,\,\phi$ -known functions, $\sum_k a_k^2 \leq 1$ (unitarity), truncated at k=2

• AFHNV parameterization, based on Omnes-representation, with 4 shape parameters: [Albertus, Flynn, Hernandez, Nieves, Verde-Velasco (2005)]

 $f_{B\pi}^+(q_i^2)/f_{B\pi}^+(0)$, $0.25q_{max}^2 < q_i^2 < q_{max}^2 \oplus \text{overall normaliz.}$

Give me four parameters, and I can fit an elephant. Give me five, and I can wiggle its trunk" (J. von Neumann)

Fixing $|V_{ub}f^+_{B\pi}(0)|$ from data

• fit various parameterizations to the exp. differential shape and $BR_{tot}(B \to \pi l \nu_l)$ [HFAG]

• using combined CLEO,BaBar,Belle shape measurement and BGL form [T. Becher, R.Hill , hep-ph/0509090]

 $|V_{ub}f^+_{B\pi}(0)| = (0.92 \pm [0.11]_{shape} \pm [0.03]_{BR}) \times 10^{-3}$

• using recent BR q²-bins [BaBar], fitted five diff. parameterizations (BK, BZ, BGLa, BGLb, AFHNV) [P. Ball , hep-ph/0611108]

 $|V_{ub}f^+_{B\pi}(0)| = (0.91 \pm [0.06]_{shape} \pm [0.03]_{BR}) \times 10^{-3}$

• it remains to calculate $|f_{B\pi}^+(0)|$ in QCD (or $f_{B\pi}^+(q^2)$ at any single point q^2)

 \Rightarrow extract $|V_{ub}|$.

best-fit form factors of 5 different parameterizations, normalized with $|V_{ub}| = (3.50 \pm 0.18) \times 10^{-3}$ (UT fits) from P. Ball, talk at FPCP 2007, Bled [hep-ph 07052290]

Lattice QCD

• b-quark too heavy, pion too light for the lattice , only small E_{π} - large $q^2 > 16 \text{ GeV}^2$ accessible

• recent progress: calculation of heavy-light hadronic matrix elements with $n_f = 2 \oplus 1$ dynamical quark flavours :

• Fermilab-MILC , "Fermilab treatment" of heavy quarks, [M.Okamoto, hep-lat/050113]

• HPQCD [E.Gulez et. al, hep-lat/0601021 (+errata)], use NRQCD, $q^{2}[GeV^{2}]$ $f_{B\pi}^{+}(q^{2})$ 17.34 1.101 ± 0.053 18.39 1.273 ± 0.099 fit to BZ param. 19.45 1.458 ± 0.142 20.51 1.627 ±0.185 $\frac{1}{|V_{ub}|^{2}} \int_{16GeV^{2}}^{q_{max}^{2}} dq^{2} d\Gamma/dq^{2} = 2.07 \pm 0.57 \text{ps}^{-1}$ 21.56 1.816 ±0.126

(dominant error from chiral extrapolation)

Light-Cone Sum Rules

- The correlation function: $q^2, (p+q)^2 \ll m_b^2, \quad b$ -quark highly virtual $F_{\lambda}(q,p) = i \int d^4x e^{iqx} \langle \pi(p) \mid T\{\bar{u}(x)\gamma_{\lambda}b(x), \bar{b}(0)i\gamma_5d(0)\} \mid 0 \rangle$
- operator-product-expansion (OPE) near the light-cone, $x^2 \sim 0$
- universal input: ⟨π(p)|ū(x)....d(0)|0⟩ ~ φ^(t)_π(u)
 -pion distribution amplitudes (DA)of twist t = 2, 3, 4..
 [P. Ball, R. Zwicky (2001),2004].
 [G. Duplancić, A.K., Th. Mannel, B. Melić and N. Offen, paper in preparation]

Derivation of LCSR

• Hadronic dispersion relation in $(p+q)^2$: $(q^2 \ll m_b^2 \text{ fixed})$

 $f_B f_{B\pi}^+(q^2) \qquad \qquad \sum_{B_h} \to duality (s_0^B)$

• matching at $\langle -(p+q)^2 \rangle \sim \mu^2 \sim m_b \Lambda$ and using duality

$$[F((p+q)^2, q^2)]_{OPE} = \frac{m_B^2 f_B f_{B\pi}^+(q^2)}{m_B^2 - (p+q)^2} + \int_{s_0^B}^{\infty} ds \frac{[\operatorname{Im} F(s, q^2)]_{OPE}}{s - (p+q)^2}$$

• inputs:

* m_b , α_s , (full QCD), we use \overline{MS} mass : $m_b(m_b) = 4.164 \pm 0.025$ GeV [J. Kühn,M. Steinhauser, C. Sturm]

* $\varphi_{\pi}^{(t)}(u), t = 2, 3, 4,$

main sensitivity to a_2, a_4 -parameters of twist 2 DA (Gegenbauer moments)

* s_0^B , M^2 fixed by calculating m_B , * we fix a_2, a_4, s_0^B by fitting q^2 dep. to the measured slope of FF

* f_B - Determined from two-point sum rule;

 $f_B = 210 \pm 19 \text{ MeV}$ [M. Jamin, B. Lange (2001)]

• uncertainties:

* induced by variation of (universal) input parameters, errors of exp.inputs

 \ast parton-hadron duality (suppressed with Borel transformation, constrained by q^2 shape) • recent LCSR results: (with one-loop pole mass m_b)

 $f_{B\pi}^+(0) = 0.258 \pm 0.031$ [P.Ball, R.Zwicky(2004)]

 $f_{B\pi}^+(0) = 0.26 \pm 0.02_{[a_{2,4}^{\pi}]} \pm 0.03_{[param]}$ (without twist-3 NLO)

[A. K., T. Mannel, M. Melcher and B. Melic, PRD (2005), hep-ph/0509049]

• preliminary result of our new LCSR calculation with \overline{MS} mass and tw.-2,3 NLO: $f_{B\pi}^+(0) = 0.25 \pm 0.04$

(combining all individual uncertainties in quadrature)

Recent $|V_{ub}|$ determinations using $f_{B\pi}^+$

Method	$ V_{ub} \times 10^3$	use of	ref.
Lattice $n_f = 3$	$3.78{\pm}0.25{\pm}0.52$	BK	Fermilab/MILC '05
Lattice $n_f = 3$	$3.35 {\pm} 0.25 {\pm} 0.50$	BZ-par.	HPQCD '07
comb.	$3.54 \pm 0.17 \pm 0.44$	$\mathrm{BGL}\oplus \mathrm{Latt.}$	Arnesen et al. '05
		\oplus SCET $B \to \pi \pi$	
comb.	$3.7 \pm 0.2 \pm 0.1$	$\mathrm{BGL}\oplus \mathrm{Latt.}$	Becher,Hill '06
comb.	$3.47 \pm 0.29 \pm 0.03$	Omnes repr.	Flynn, Nieves '07
		\oplus Latt \oplus LCSR (BZ)	
LCSR	$3.5 \pm 0.4 \pm 0.1$	BGL	Ball '06

• using $|V_{ub}f^+(0)|$ from P. Ball analysis, our *preliminary* result: $|V_{ub}| = (3.64 \pm [0.3]_{exp} \pm [0.58]_{th}) \times 10^{-3}$

• UT fits (only CP- observables): $|V_{ub}| = (3.50 \pm 0.18) \times 10^{-3}$ [Utfit, CKMfitter]

• $B \rightarrow X_u l \nu_l$ ("selected" analyses): $|V_{ub}| = 4.10 \pm 0.30(exp) \pm 0.29(th) \times 10^{-3}$ [M.Neubert, talk at FPCP-2007, Bled]