

$B \rightarrow X_s \gamma$ at BaBar

Henning Flächer

CERN/Royal Holloway

for the BaBar Collaboration

19 July 2007

EPS Manchester

The radiative decay $b \rightarrow s\gamma$

The photon energy spectrum:

- sensitive to HQ parameters
- $m_b \sim E_{\gamma}/2$
- $\mu_{\pi}^{2} \sim \langle E^{2} \langle E^{2} \rangle \rangle$
- quark mass interesting as SM parameter
- knowledge of HQ parameters important input to $|V_{ub}|$

19 July 2007

Theoretical Predictions

• <u>3 NNLO calculations for Branching Fraction appeared</u> in late 2006:

- Misiak et al. hep-ph/0609232
 - **♦** BF(B→X_sγ) = (3.15 ± 0.23) 10⁻⁴ for E_γ > 1.6 GeV
 - dedicated error analysis resulting in 7% error
- Becher et al. hep-ph/0610067
 - **♦** BF(B→X_sγ) = (2.98 ± 0.26) 10⁻⁴ for E_{γ} > 1.6 GeV
 - Iarger perturbative uncertainty resulting in 9% error
- > Andersen et al. hep-ph/0609250

♦ BF(B→X_sγ) = (3.47 ± 0.48) 10⁻⁴ for E_{γ} > 1.6 GeV

11% uncertainty from variation of renormalisation scale

• Compare with:

- > NLO calculations:
 - ♦ (3.3-3.6) x 10⁻⁴ with ~10% uncertainty
- Experimental HFAG average:
 - ♦ (3.55 ± 0.26) x 10⁻⁴
 7% uncertainty

Experimental Strategies for B \rightarrow X_s γ

- Ignore X_s system
- Reconstruct only the γ
- Pros
 - No X_s fragmentation sensitivity
 - theoretically clean
- Cons
 - > High background
 - > Measure E_{γ}^{*} in Y(4S) frame

- Fully reconstruct subset of X_s final states
- Pros
 - Lower background
 - > Good E_{γ} resolution in B-frame

• Cons

- X_s fragmentation systematic
- Missing X_s decay modes

New Approach: Full reconstruction tag

- Hadronic decay of one B meson is fully reconstructed
 - > 4-momentum, charge and flavour determined
 - Enables measurement of Isospin and CP Asymmetry
 - With 4-momentum of Y(4S), also 4-momentum of decaying B is known
 - Photon energy can be measured in B rest frame
- Signal and BB background yields determined from fit to M_{ES} in bins of photon energy

$$m_{ES} = \sqrt{(E_{beam}^*)^2 - P_{B_{reco}}^2}$$

- Continuum events do not peak in M_{ES} and can thus be subtracted
- Normalisation for branching fraction is determined from number of Bs in full reconstruction sample
- Small efficiency extrapolation
- Disadvantage: small B reconstruction efficiency of ~0.3%

Henning Flächer – CERN/RHUL

Xs

B_{signal}

Event Selection

$\textbf{B} \rightarrow \textbf{X}_{s} \gamma$: \textbf{m}_{ES} Fits

Determine Partial Branching Fraction in bins of photon energy:

All numbers determined from fits to m_{ES}

19 July 2007

$B \rightarrow X_s \gamma : E_\gamma$ Spectrum

19 July 2007

$B \rightarrow X_{s}\gamma$: Partial Branching Fractions

Partial Branching Fractions:

- Statistical errors dominant
- main systematic errors will get reduced with larger dataset and higher statistics control samples

Integrated Branching Fraction <u>above E_{cut}:</u>

				-
Pre	liminary	BF[E	$E_{\gamma} > E_{cut}$	$]/10^{-6}$
	$E_{\rm cut}$ (GeV)	Value	$\sigma_{ m stat}$	$\sigma_{ m syst}$
	1.0	2//		1 50
	1.9	366	± 85	± 59
	2.0	339	± 64	± 47
	2.1	278	± 48	± 34
	2.2	248	\pm 38	± 26
	2.3	207	± 30	± 19

Dominant Systematic Errors:

- **Mes Fit Parameterisation** 12%
- 10% **BB Background Modelling** 4%
- **Detector Response** \geq

19 July 2007

$B \to X_s \gamma$: Branching Fractions

19 July 2007

$\mathbf{B} \rightarrow \mathbf{X}_{\mathbf{s}} \gamma : \mathbf{E}_{\gamma}$ Moments

- Measurement of photon energy moments as a function of minimum energy
- Good agreement with previous results based on different methods and independent data samples

Still to come:

- Isopin and CP asymmetries
- Use moments for HQ parameter extraction / combine with other measurement

19 July 2007

Henning Flächer – CERN/RHUL

EPS Manchester

Conclusions

- Recent progress in studying $B \rightarrow X_s \gamma$ from both theory and experiment
 - very good agreement between different experimental approaches
- New measurement of $B{\rightarrow} X_s \gamma$ photon energy spectrum using hadronic B tag
 - > photon spectrum is measured in B rest frame

 $BF(B \rightarrow X_{s}\gamma) [E_{v} > 1.9 \text{ GeV}] = (3.66 \pm 0.85 \pm 0.59) \times 10^{-4}$

- ✤ still statistically limited ~23%
- systematic uncertainties will be reduced with larger data sample!
- > Method will be used to measure Isospin and CP asymmetries
- Complimentary to lepton tagged and semi-inclusive analysis

> full benefit of method to be exploited with full dataset!

BACKUP

19 July 2007

Henning Flächer – CERN/RHUL

EPS Manchester

Comparison of Exp. Methods

• Inclusive full reconstruction tag

- > 119 ± 22 signal events
- stat. uncertainty ~23% with 210 fb⁻¹
- > M_{es} fit parameterisation ~ 12%
- > BB Background ~9%
- Inclusive lepton tag
 - > 758 ± 66 signal events
 - > stat. uncertainty 8% with 81fb⁻¹
 - > model dependence ~8%
 - ▹ BB background ~6%
- Sum of exclusive modes
 - > 1513 ± 85 signal events
 - stat. uncertainty 6% with 81fb⁻¹
 - > missing fraction of X_s modes ~10%
 - > fragmentation of $X_s \sim 6\%$

Will be reduced with improved statistics

Can be reduced with improved statistics

difficult to improve on more data helps