Investigation of Resonance Structure in the System of Two K_S Mesons in the Mass Region around 1450 MeV

Ekaterina Fadeeva 6-m MIS ITEP Collaboration Institute for Theoretical and Experimental Physics, Moscow, Russia

MWSC—tracking detectors; HOD 1,2,3– Hodoscopes; GS– Gamma-calorimeter; HC– Hadron calorimeter.

The 2007 Europhysics Conference on High Energy Physics

19-25 July 2007, Manchester, England

Experimental data

The experimental data on the production of K_S pairs were obtained in $\pi^- p$ interaction at 40 GeV by using a neutral trigger.

The system of two K_S -mesons that was recorded under the experimental conditions of 6-m spectrometer is produced in the following two reactions:

$$\pi^- \mathbf{p} \to \mathbf{K}_{\mathbf{S}} \mathbf{K}_{\mathbf{S}} \mathbf{n},$$
 (1)

$$\pi^{-}\mathbf{p} \to \mathbf{K}_{\mathbf{S}}\mathbf{K}_{\mathbf{S}} + (\mathbf{n} + \mathbf{m}\pi^{0}, \mathbf{p} + \pi^{-}, ...).$$
 (2)

We have registered $\sim 40\ 000$ events of these reactions.

The efficiency of registered $K_S K_S$ system is about 45% in the mass region near 1450 MeV.

The precision of measurement of the effective mass of the $K_S K_S$ -system is better than 3 MeV in the mass region around 1450 MeV.

Kinematical variables:

1. The effective mass M_{KK} of the pair of K_S -mesons;

2. The missing mass squared MM^2 defined as the squared mass of particles that are produced together with the $K_S K_S$ -system and which are not recorded in the spectrometer;

3. The 4-momentum transferred from the beam to the system being studied, t;

4. The cosine of the Gottfried-Jackson angle, $cos\theta_{GJ}$;

5. The Treiman-Yang angle, ϕ_{TY} .

The angles are calculated in the rest frame of the pair of K_S -mesons, the beam axis direction in this system being taken for the polar axis. The plane from which the Treiman-Yang angle is reckoned is spanned by the momenta of the beam and of the target proton in this reference frame.

Effective-mass spectrum of two K_S-mesons

The 2007 Europhysics Conference on High Energy Physics

19-25 July 2007, Manchester, England

Cosine of Gottfried-Jackson angle

19-25 July 2007, Manchester, England

Momentum-transfer distribution

The Method of Maximum Likelihood

 $F(P;\Omega)$ -the probability-density function, where P is the set of the following parameters –

- 1. The amplitude of the resonance,
- 2. The mass M of the resonance,
- 3. The width σ appearing in the Gauss function,
- 4. The coefficients of the squared amplitudes of the angular distributions.

Elements of the phase space Ω are

- 1. Effective mass of two K_S -mesons,
- 2. The cosine of the Gottfried-Jackson angle θ_{GJ} ,
- 3. The Treiman-Yang angle ϕ_{TY} .

In order to obtain the most probable values of the parameters, we minimized the functional:

$$L = \int_{\Omega} \epsilon(\Omega) F(P;\Omega) d\Omega - \sum_{i=1}^{N} \ln F(P;\Omega_i).$$
(1)

where $\epsilon(\Omega)$ is the event-detection recording, N being the number of events. To compare the probabilities of experimental-data description with different parameter set, we calculated χ^2 by the formula:

$$\chi^2 = -2\ln L + const. \tag{2}$$

The 2007 Europhysics Conference on High Energy Physics

19-25 July 2007, Manchester, England

Conclusion

At the confidence better than 6 standard deviations, we have obtained an indication of the existence of the resonance having the mass 1449.5 $\pm 2.0 \pm 3.0$ MeV and the width $\sigma = 7.5 \pm 1.5$ MeV. Number of events in the resonance region is 67 ± 10 . The spin-parity of this resonance is preferably $J^{PC} = 2^{++}$. The product of the cross section for X(1450) formation and the relevant branching ratio $\sigma Br(K_SK_S)$ is estimated at about $25 \, {}^{+25}_{-5}$ nbn.

Comparison with other results

TECN	Reaction	Mass, MeV	Width, MeV
87 DM2	$J/\psi \to \gamma \pi^+ \pi^-$	1421 ± 5	30 ± 9
86 SPEC	$pp \rightarrow pp\pi^+\pi^-$	1480 ± 50	150 ± 50
84 CNTR	$17\text{-}18 \ \pi^- p \to K^+ K^- n$	$1436 \begin{array}{c} +26 \\ -16 \end{array}$	$81 {}^{+56}_{-29}$
84 CNTR	$63 \ \pi^- p \to K^0_S K^0_S n, K^+ K^- n$	1412 ± 3	14 ± 6
67 OSPK	5, 7, 12 $\pi^- p \to K^0_S K^0_S n$	$1439 \begin{array}{c} +5 \\ -6 \end{array}$	$43 {}^{+17}_{-18}$
07 SPEC	$40 \ \pi^- p \to K_S K_S n$	$1449.5 \pm 2 \pm 3$	7.5 ± 1.5