Quarkonium spectroscopy and search for new states at BaBar

G. Cibinetto - INFN Ferrara on behalf of the BaBar collaboration

E.P.S conference on H.E.P. – Manchester, July 19-25 2007

Outline

- ✓ Charmonium and charmonium like states at BaBar
- ✓ Update on X(3872)

- ✓ Y(3940): new result from BaBar
- ✓ The Y(4260) and a structure at 4350 MeV/c²
- ✓ Summary and outlook

Charmonium production

X Production in B decay

X Double charmonium production

Reconstruct a J/ψ and compute the recoiling invariant mass.

× Initial state radiation

X Two photons production

Production of C=+1 states

In	our	data	samp	le

	J/ψ	ψ (2S)
In B decays	9 M	3 M
In ISR	16.5 M	6 M

The charmonium spectrum

- Charmonium properties are well understood and until DD threshold. Good agreement between data and prediction until new states have been discovered.
- Region above the DD threshold (3.73GeV) is very poorly known.
- *cc* states above open charm threshold are expected to be not narrow and decay mainly to open charm channels.

Update on X(3872)

First observation by BELLE in B decays: B[±] \rightarrow X(3872)K [±] with X(3872) \rightarrow J/ ψ $\pi^{+}\pi^{-}$

PRL 91, 262001 (2003)

X(3872) search for charged partners

- **X** Consistent with ρ -like $\pi^+\pi^-$ in X \rightarrow J/ ψ $\pi^+\pi^-$
- I=0 favored for X(3872) the J/ψ π⁺π⁻ decay is isospin violating (small width)

G. Cibinetto

Search for D(*)**D**(*) **resonances**

All modes Events / (0.004 347 fb⁻¹ preliminary 20 4.1σ 15 with $D^{*0} \rightarrow D^0 \pi^0$ and $D^0 \gamma$ 10 $M = 3875.4_{-2.0}^{+1.2} \pm 0.7 MeV /c^2$ 3.8 3.95 4 4.05 4.1 4.15 4.1 $\overline{D}^{0}D^{*0} + \overline{D}^{*0}D^{0}$ Invariant Mass (GeV/c²) 3.85 3.9

PRL 97, 162002(2006)

The mass is in good agreement with Belle's result in the same final state, but 2.5 σ higher than the world average.

BaBar studied 8 channels:

 $B^+ \rightarrow \overline{D}^0 D^{*0} K^+ + \overline{D}^{*0} D^0 K^+$

 $B_0 \rightarrow \overline{D}_0 D_{*0} K_0 + \overline{D}_{*0} D_0 K_0$

 $\Delta m(B^0/B^+) = 0.2 \pm 1.6 \text{ MeV/c}^2$

X(3872) interpretation

- Angular distribution (from CDF and Belle) compatible with 1⁺⁺ state.
- The decay to $\chi_{c1,2} \gamma$ has been searched by Belle but not observed.
- The decay to $J/\psi \eta$ was searched by Babar but not observed.
- The charmonium interpretation starts being in trouble.
- $D^0\overline{D}^{*0}$ molecule?
- (E. Braaten and M. Kusunoki)
- $B^0 \rightarrow X(3872)K^0$ suppressed by a factor 10 compared to $B^+ \rightarrow X(3872)K^+$
- Measurements:
 - $R(B^0/B^+) = 0.50 \pm 0.30 \pm 0.05$ in $B \rightarrow J/\psi \pi^+ \pi^-$
 - BaBar: Phys. Rev. D73 (2006) 011101 • $R(B^0/B^+) = 2.23 \pm 0.93 \pm 0.55$ in $B \rightarrow \overline{D}^0 D^{*0}K$ **BaBar: Preliminary**
- 4 quark state? (L. Maiani, F. Piccinini, A. D. Polosa, V. Riguer)
 - Predict 2 neutral states and 2 charged states
 - Neutral states produced in B⁰ and B⁺ decays: Δm ≈ (7 ± 2) MeV/c²
 - Measurements:
 - $\Delta m = (2.7 \pm 1.3 \pm 0.2) \text{ MeV/c}^2 \text{ in } B \rightarrow J/\psi \pi^+ \pi^-$
- BaBar: Phys. Rev. D73 (2006) 011101 **BaBar: Preliminary**
- $\Delta m = (0.7 \pm 1.9 \pm 0.3) \text{ MeV/c}^2 \text{ in } B \rightarrow \overline{D}^0 D^{*0} \text{K}$
- Glueball? Hybrid? ...

NEW Y(3940): new result

Babar preliminary

- $\begin{array}{lll} M(Y) &=& (3914.3^{+3.8}_{-3.4}(stat)^{+1.6}_{-1.6}(syst)) \ {\rm MeV/c}^2 \\ \Gamma(Y) &=& (33^{+12}_{-8}(stat)^{+0.6}_{-0.6}(syst)) \ {\rm MeV} \,. \end{array}$
 - Belle's Evidence for $B \rightarrow YK$ (Y $\rightarrow J/\psi \omega$) is confirmed
 - > ~30MeV lower mass than Belle's
 - Narrower width

G. Cibinetto

- Preliminary BF estimate similar to the Belle's (~10⁻⁵)
- No evidence for B→X(3872)K (X→J/ψω)

Search for ISR Y(4260) $\rightarrow \pi^+\pi^-\psi(2S)$

Y(4260) discovered in ISR $\pi^+\pi^-J/\psi$. How about $\pi^+\pi^-\psi(2S)$ in ISR?

Search for Y(4260) $\rightarrow \pi^+\pi^-\psi(2S), \psi(2S) \rightarrow \pi^+\pi^-J/\psi$

298 fb⁻¹, hep-ex/0610057 Submitted to PRL

Single resonance fit \Rightarrow mass=(4324±24) MeV/c², Γ =(172±33) MeV (statistical errors only)

Incompatible with ψ (4415); Poorly described by Y(4260)

Prob=4.5 '10⁻³ that the two structures are the same

G. Cibinetto Quarkonium spec

Interpretation of the Y(4260)

- No cc̄ assignment for 1⁻⁻ state
- Probably not a glueball
 - No evidence for $Y(4260) \rightarrow \phi \pi \pi$
- 4 quark state [cs][c̄s]? (I. Bigi, L. Maiani, F. Piccinini, A. D. Polosa and V. Riquer)
 - Should decay dominantly to $\overline{D}_s \underline{D}_s$
- Hybrid meson? (many authors)
 - $D\overline{D}$, $D^*\overline{D}^*$, $D\overline{D}^*$ decays suppressed
 - $D\overline{D}_1(2420)$ decays should dominate
- What if there are 2 different states?

Summary and Outlook

- Several new states have been recently observed in the charmonium mass region.
- X Their nature is still unknown
 - > Update on X(3872)
 - > New result for Y(3940)
 - Y(4260) and a new structure at 4350MeV/c²
- Several hypothesis have been formulated
- Need more experimental data to discriminate among the different models:
 - Quantum numbers
 - > Decay modes

- > Branching ratios
- > Angular distributions
- > Charged partners

Backup slides

The Babar detector

X(3872)

No Y(4260) in R scan

$$R = \frac{\sigma(e^+e^- \to hadrons)}{\sigma(e^+e^- \to \mu^+\mu^-)}$$

G. Cibinetto Quarkonium spectroscopy and search for new states at BaBar