On Flavor Production in CMS

Valery P. Andreev UCLA

EPS HEP 2007 Manchester, England July 21, 2007

Outline

- Introduction
- Vertex reconstruction in CMS
- Inclusive *b* production in CMS
- Conclusions / Outlook

Large Hadron Collider (LHC)

- Design luminosity L = 10³⁴cm⁻¹s⁻¹ ~ 100 fb⁻¹/ year
 Pile up ~ 20 collisions/crossing
 40 MHz pp bunch-crossing rate
- Start-up luminosity $L \approx 10^{32} \text{ cm}^{-1} \text{s}^{-1}$ $\Rightarrow \sim 1 \text{ fb}^{-1} / \text{ year}$
- expected completion : mid 2008 EPS HEP 2007

The Large Hadron Collider (LHC)

	Beams	Energy	Luminosity	
LEP	e⁺ e⁻	200 GeV	10 ³² cm ⁻² s ⁻¹	
LHC	рр	14 TeV	10 ³⁴ cm ⁻² s ⁻¹	
	Pb Pb	1312 TeV	10 ²⁷ cm ⁻² s ⁻¹	

The CMS detector

General-purpose detector

The Compact Muon Solenoid (CMS)

Beauty production

- *b production* at hadron colliders
 - Huge cross section
 - Challenge for perturbative QCD
 - Standard model processes
 b in decays of top, Z, ...
 - New physics searches:
 - b jets as a signal feature
 - b in decays of Higgs, SUSY, ...
 - b jets as a background

Inclusive *b* **production** / **QCD aspects**

- present status of the production phenomenology at hadron colliders
 - The shape of transverse momentum and angular distributions as well as the azimuthal angular correlations in a reasonable agreement with perturbative QCD
 - The observed cross-sections are larger than QCD predictions
 - The agreement between experiment and theory has improved due to the evolution of latter (M.L. Mangano, hep-ph/0411020 and references therein), mostly a consequence of improved experimental inputs
 - More precise parton density function, up-to-date α_s
 - Proper fragmentation effects estimate
 - The agreement is not complete and the improvement of the phenomenological description requires new experimental input (LHC)

B production at LHC

Di-jet bb, $E_T = 100 \text{ GeV}$

+ high luminosity pile-up

 $\Delta \phi_{bb}$ as discriminating variable

Excellent track impact parameter resolution is needed

EPS HEP 2007

CMS inner tracker (I)

All-silicon tracker: > 220 m² of silicon sensors

• Pixel detector

- pixel size 100µm x 150µm
- hit resolution: $10 15 \,\mu m$
- Barrel
 - 3 layers
 - R = 4.4 10.2 cm
 - 48 M pixels
 - Endcaps
 - 2 layers
 - $|\mathbf{z}| = 34.5 / 46.5 \text{ cm}$
 - 18 M pixels
 - Tilted for Lorentz angle

EPS HEP 2007

CMS inner tracker (II)

All-silicon tracker: > 220 m² of silicon sensors

- Silicon Strip detector
 - **-** 10 15 points

Track resolution:

EPS HEP 2007

Valery Andreev, UCLA

2

η

CMS Vertex Reconstruction

Primary Vertex finding

W. Adam – Vertex06

EPS HEP 2007

H115-gg

B-jet, 30-

50GeV

DY. 2 mu

ttH

50

H150-ZZ-

4e

Secondary Vertex finding

- "Trimmed Kalman Vertex Finder"
 - First fit with complete set
 - Continue with rejected tracks
- **"Tertiary Vertex Track Finder"**
 - Start with TKVF •
 - **Choose additional tracks close to flight path** •
 - Only used for kinematics (not for position)

Resolution:

b

- Flight dist.
- Angle (3D)

550 µm 15.5 mrad **8.0 mrad**

С

b (TVTF) c (TVTF)

65

b

С

EPS HEP 2007

B tagging performance

b acceptance

- ATLAS/CMS
 - $|\eta| < 2.5/2.4$
 - Tracker/muon detector acceptance
 - high-P_t muon trigger
 - b-tagged jet trigger
 - Muon+b-Jet trigger
- LHCb
 - Forward spectrometer
 - $1.9 < \eta < 4.9$
 - much softer p_t triggers

There is an overlap

CMS study: much higher P_t could be reached

CMS Analysis: B production

V.P. Andreev, D.B. Cline, S. Otwinowski CMS Note 2006/120

- Inclusive *b* production total cross section
- Differential cross sections $d\sigma/dp_{t'} d\sigma/d\eta$
 - Selection (b-tag)
 - semileptonic b-decays into muons
 - Background (b purity)
 - Trigger efficiency
 - Luminosity

Event selection

QCD event Generation: PYTHIA

Full simulation of the detector

Trigger

Level-1: "single μ ", $p_t > 14 \text{ GeV/c}, |\eta| < 2.1$ $\epsilon = 18 \%$ High Level Trigger: "muon + b-jet", $P_t^{\mu} > 19 \text{GeV/c}, E_t^{\text{jet}} > 50 \text{GeV}, |\eta| < 2.4$ $\epsilon = 60 \%$

Off-line selection

B-tagged jet: E_t > 50 GeV, |η| < 2.4
 ε = 65 % (barrel), 55 % (endcap)
 Muon associated with B-tagged jet

ε = 75 %

- The most energetic b tagged jet as the reconstructed B-particle candidate
- the rate of *b* jets is a direct measurement of the *b* production with only small fragmentation systematics

EPS HEP 2007

B-jet resolution

18

EPS HEP 2007

B-tag efficiency

B tag:

inclusive secondary vertex reconstruction in jets

Event selection

2.5 M simulated events processed

$\hat{p}_{\mathrm{T}},$	$\sigma^{ m QCD},$	$N_{generated}^{QCD}$,	bb purity,	$c\overline{c}$ fraction,	uds fraction,	$N_{expected}^{b\overline{b}}$,
${ m GeV}/c$	$\mu \mathrm{b}$	events	%	%	%	events
50 - 80	20.9	198993	66	32	2	1.4 M
80 - 120	3.0	294986	66	32	2	6.1 M
120 - 170	0.5	291982	72	26	2	5.1 M
170 - 230	0.1	355978	71	26	3	2.4 M
230 - 300	$2.4 imes 10^{-2}$	389978	73	24	3	0.9 M
300 - 380	$6.4 imes 10^{-3}$	283983	70	25	5	0.3 M
380 - 470	$1.9 imes 10^{-3}$	191989	68	27	5	88 k
470 - 600	$6.9 imes 10^{-4}$	190987	64	29	7	34 k
600 - 800	$2.0 imes 10^{-4}$	94996	60	31	9	10 k
800 - 1000	$3.6 imes 10^{-5}$	89999	60	30	10	2.0 k
1000 - 1400	1.1×10^{-5}	89998	55	31	14	0.5 k

Estimate for 10 fb⁻¹

EPS HEP 2007

Fit results

QCD events MC: $230 < P_t < 300 \text{ GeV/c}$

Muon P_t w.r.t. the closest B jet

EPS HEP 2007

Systematics ($L \ge 10 \text{ fb}^{-1}$)

- jet energy scale 12%
- fragmentation 9 %
- event selection 6 %
- luminosity 5 %
- tagging 5 %
- trigger 3 %
- misalignment 2 %
- tt background 0.7 %
- muon
 - Br. Ratio
 2.6 %
 1.0 %
 total = 18 %

b-quark P_t reach

We can reach 1.5 TeV as the highest measured B hadron P_t

B production at LHC: conclusions

Extended P_t reach

CMS analysis summary

- ~16 M b events to be selected at 10 fb⁻¹ (one year of low lumi LHC)
- *b* purity in a range from 70 % to 55 %
- up to 1.5 TeV B-hadron P_t reach

EPS HEP 2007

Outlook

- CMS tracker is capable to provide an excellent vertexing and b-tagging
- CMS is looking forward to measure open beauty production rate at 14 TeV
- bb-correlations measurements are foreseen to investigate in detail the production mechanisms
- New test of QCD is coming
- Important for New Physics search