

Heavy Quark Production at HERA

Interest in Charm :

- m_c is large
 - pQCD applicable
 - multi scale problem (Q², pt²)
- sensitivity to gluon density
- large fraction of cross section
- tool for b-tagging

Boson Gluon Fusion

carsten.mebunr@desy.de

Theoretical Calculations and Monte Carlo Programs

Calculations and Monte Carlo programs used to describe Heavy Flavour production:

- Monte Carlo Programs
 - leading order (LO) + parton shower (PS) models available
 - DGLAP evolution (collinear factorization):
 - γp: PYTHIA, HERWIG
 DIS: BAPGAP
 - CCFM evolution (kt factorization) yp + DIS: CASCADE
- Theoretical Calculations
 - full NLO calculations available
 - > γp: FMNR► DIS: HVQDIS

Charm Production in DIS

New preliminary result: $\sigma_{\rm vis}^{\rm tot}(e^{\pm}p \rightarrow e^{\pm}D^{\star\pm}X) =$ $4.23 \pm 0.09 \text{ (stat.)} \pm 0.37 \text{ (syst.) nb}$

	$\sigma_{ m vis}^{ m tot}$	m₀ [GeV]
HVQDIS	4.28 nb	1.3
	3.46 nb	1.6
RAPGAP	4.40 nb	1.5
CASCADE	4.29 nb	1.5

Differential D* Cross Sections

Large HERA II statistics make more differential tests possible:

Large HERA II statistics make more differential tests possible:

Large HERA II statistics make more differential tests possible:

Large HERA II statistics make more differential tests possible:

D* + Jets

 \mathbf{p}_2

Study azimuthal correlation between D* and the jet in γp and DIS: $\Delta \Phi(D*, Jet)$

 Gluon radiation or initial parton-k_T can lead to deviation from back-to-back topology

Results based on HERA I data:

- PYTHIA [γp]: good description by LO+PS
- HVQDIS [DIS] and FMNR [γp]: need for contributions beyond NLO
- CASCADE [γp +DIS]: k_T-distribution in unintegrated gluon density too broad

D* + Jets

1.5

0.5

£

Abstract 191

b)

120 150 180

 $\Delta \phi(D^*, jet)$ [°]

Abstract 192

vp: D^* + other jet

Data

-- FMNR

30

 $10 < Q^2 \le 100 \text{ GeV}^2$

60

100 125 150 175

carsten.niebuhr@desy.de

90

FMNR 🛛 Had

XMVFNS⊗Had

γp

a)

150 180

10

10⁻²

10⁻³

1

n

£

DIS

 $vp: D^* + other iet$

Data

Cascade 1.2

Pythia 6.2 (dir.)

60

30

90

120

 $\Delta \phi(D^*, jet) [^{\circ}]$

 $2 \le Q^2 \le 10 \text{ GeV}^2$

100 125 150 175

75

75

-- Pythia 6.2

Study azimuthal correlation between D* and the jet in γp and DIS: $\Delta \Phi(D*, Jet)$

Gluon radiation or initial parton-k_T can lead to deviation from back-to-back topology

 $^{2}\sigma_{vis}/dQ^{2}dA\phi$ [nb GeV^{-2 o-1-} 10 Results based on HERA I data: 10 7/1 **PYTHIA** [γp]: good description by LO+PS H1 Data CASCADE HVQDIS [DIS] and FMNR [yp]: need for 10 HVODIS contributions beyond NLO - CASCADE [γp +DIS]: k_T-distribution in norm unintegrated gluon density too broad R* 0.5 0

D* + Jets

Study azimuthal correlation between D* and the jet in γp and DIS: $\Delta \Phi(D*, Jet)$

 Gluon radiation or initial parton-k_T can lead to deviation from back-to-back topology

Results based on HERA I data:

- PYTHIA [γp]: good description by LO+PS
- HVQDIS [DIS] and FMNR [γp]: need for contributions beyond NLO
- CASCADE [γp +DIS]: k_T-distribution in unintegrated gluon density too broad

carsten.niebuhr@desy.de

EPS HEP07, Manchester: Charm Production at H1

Contribution from Resolved Processes

Contribution from Resolved Processes

carsten.niebuhr@desy.de

Inelastic J/ Ψ Production $\mathcal{D}_{\text{mext}: \gamma g} \rightarrow c \bar{c} g$

Models for Charmonium Production:

- Colour Singlet Model (CS)
 - radiation of hard gluon
- Colour Octet contribution (CO)
 - introduced in NRQCD to describe Tevatron data
 - factorisation into hard scattering process and transition to real J/Ψ by non-perturbative LDME
 - LDME extracted from fits to Tevatron data
 - LDME expected to be universal
- Predictions for HERA
 - DIS
 - NRQCD fails to describe HERA data
 - CS Model (LO) generally in agreement with data
 - CS Model (NLO) no calculation available
 - Photoproduction
 - CS Model (NLO) describes HERA data well

Inelastic J/YElectroproduction

HERA II data 2004-2006

L= 258 pb⁻¹

• Kinematic range $3.6 < Q^2 < 100 \text{ GeV}^2$ $50 < W_{\gamma p} < 225 \text{ GeV}$ $0.3 < z_{J/\psi} < 0.9$ $p_{T,\psi}^* > 1.0 \text{ GeV}$

CS LO Monte Carlo Programs

- EPJPSI [DGLAP]
 - normalization too low
 - Q² shape too steep
- CASCADE [CCFM]
 - normalization too high
 - Q² shape too hard
 - $W_{\gamma p}$ shape too steep

EPS HEP07, Manchester: Charm Production at H1

Increased HERA II statistics allow more differential measurements

- hardness of p_T* spectrum increases with z
- this is well reproduced by CS LO MCs
- no indication for contributions beyond CS LO

- additional terms (e.g. colour octet) must be
 - much smaller in size or
 - similar in shape to CS LO

Conclusion & Outlook

- HERA II data provide large increase in statistics for Charm analyses
 - so far ~ 50% of HERA II data have been analysed
 - further qualitative improvements expected from full exploitation of vertex detectors

- With improved statistics (finally combined HERA I+II) one can study deficits of models in much more detail. This will allow to further
 - differentiate between models
 - tune parameters of models / calculations

