HEP 2007 2007 Europhysics Conference on High Energy Physics

July 19 - 25, 2007

Manchester, England

Precision measurements of α_s at HERA

The strong coupling constant α_s

- The strong coupling constant, α_s , is one of the fundamental parameters of QCD
- However, its value is not predicted by the theory and must be determined from experiment
- The success of perturbative QCD lies on precise and consistent determinations of α_s from diverse phenomena (eg τ decays, event shapes, Z decays ...)
- There is a wealth of precise determinations of α_s at HERA from a variety of observables (jets, structure functions, jet substructure...)
- The $\alpha_s(M_Z)$ values are in good agreement with each other and with the world average
- HERA average obtained from these determinations:

 $\rightarrow \overline{\alpha_s(M_Z)} = 0.1186 \pm 0.0011 \text{ (exp.)} \pm 0.0050 \text{ (th.)}$

experimental uncertainty: $\sim 0.9\%$; theoretical uncertainty: $\sim 4\%$

HERA average: 0.1186 ± 0.0011 (exp.) ± 0.0050 (th.)

C Glasman, hep-ex/0506035

July 19-25, 2007

HEP 2007, Manchester, England

The method to determine α_s from jet observables

- The procedure to determine α_s from jet observables used by ZEUS is based on the α_s dependence of the pQCD calculations, taking into account the correlation with the PDFs:
 - perform NLO calculations using different sets of proton PDFs
 - use as input in each calculation the value of $lpha_s(M_Z)$ assumed in each PDF set
 - parametrise the α_s dependence of the observable:

 $A(lpha_s(M_Z)) = A^i_i \, lpha_s(M_Z) + A^i_2 \, lpha_s(M_Z)^2$

- determine $\alpha_s(M_Z)$ from the measured value using the NLO parametrisation
- This procedure handles correctly the complete α_s -dependence of the NLO calculations (explicit dependence in the partonic cross section and implicit dependence from the PDFs) in the fit, while preserving the correlation between α_s and the PDFs
- Similar method used by H1

HEP 2007, Manchester, England

<mark>Z</mark>EUS

$lpha_s(M_Z)$ from jet cross sections

Inclusive-jet cross section in NC DIS

 $\frac{\text{determination at HERA (total uncertainty: } \sim 3.6\%; \text{theoretical uncertainty: } \sim 1.9\%)}{\text{ZEUS Collab, Phys Lett B 649 (2007) 12}}$

ZEUS

Theoretical uncertainties on $\alpha_s(M_Z)$

<mark>ZE</mark>US

$\alpha_s(M_Z)$ from jet cross sections

Normalised inclusive-jet cross section in NC DIS

• From the measured normalised $1/\sigma_{
m NC}~d^2\sigma_{
m jets}/dE_{T,{
m B}}^{
m jet}dQ^2$ for $150\!<\!Q^2\!<\!15000$ GeV² a value of $\alpha_s(M_Z)$ has been extracted: Normalised Inclusive Jet Cross Section

$$\alpha_s(M_Z) = 0.1193 \pm 0.0014 \text{ (exp.)}^{+0.0049}_{-0.0034} \text{ (th.)}$$

- Experimental uncertainties:
 - \rightarrow dominated by jet energy scale uncertainty and model dependence
- Theoretical uncertainties:

July 19-25, 2007

- → terms beyond NLO: dominant
- \rightarrow uncertainties from pPDFs: small
- \rightarrow uncertainties from μ_F : small
- \rightarrow hadronisation corrections: negligible
- $\rightarrow \alpha_s(M_Z)$ from normalised inclusive jet cross sections: very precise determination at HERA (total uncertainty: $\sim 4.3\%$; experimental uncertainty: $\sim 1.1\%$) See M Gouzevitch's talk

H1 Collab, DESY 07-073

150 < Q²< 200 GeV²

🖣 H1 Data $NLO \otimes hadr \otimes Z^0$

_____ ອີ 10⁻

σ_{jet}/σ_{NC}

200 < Q²< 270 GeV² H1

E_/GeV

E₊ / GeV

H1

July 19-25, 2007

Test of the energy-scale dependence of α_s

Inclusive-jet cross section in NC DIS

 The QCD prediction for the energy-scale dependence of the coupling was tested by determining α_s from the measured $d\sigma/dE_{T,{
m B}}^{
m jet}$ at different $E_{T,{
m B}}^{
m jet}$ values: ZEUS $\mathbf{z}_{\mathbf{s}}$ do/dE^{jet}_{T,B} (pb/GeV) ZEUS 82 pb **NLO** \otimes hadr \otimes Z⁰ • ZEUS 82 pb⁻¹ 10² OCD $(\alpha_{c}(M_{\tau}) = 0.1207 \pm 0.0044)$ 0.2 R=1.0 (x 10) 10 R=0.7 (x 1) 0.15 jet energy scale uncertainty -2 10 R=0.5 (x 0.1) $O^2 > 125 \text{ GeV}^2$ $|\cos \gamma_h| < 0.65$ -2 < $\eta_P^{jet} < 1.5$ $\left\{ \right\}$ stat. $\left\{ \right\}$ stat. $\left\{ \right\}$ stat. $\left\{ \right\}$ th. -3 10 0.1 15 20 25 30 35 40 48 E^{jet}_{T,B} (GeV) 40 45 50 55 25 30 10 10 15 20 35 E^{jet}_{T.B} (GeV)

ightarrow The results are in good agreement with the predicted running of $lpha_s$ over a large range in $E_{T,{
m B}}^{
m jet}$ ZEUS Collab, Phys Lett B 649 (2007) 12

C Glasman (Universidad Autónoma de Madrid)

<mark>Z</mark>EUS

• The QCD prediction for the energy-scale dependence of the coupling was tested by determining α_s from the measured normalised cross sections at different $E_{T,B}^{\text{jet}}$ and Q values: α_s from Norm. Inclusive Jet Cross Section

ightarrow The results are in good agreement with the predicted running of $lpha_s$ over a large range in $E_{T,{
m B}}^{
m jet}$ and Q

July 19-25, 2007

July 19-25, 2007

New HERA $lpha_s(M_Z)$ combination

- Fit to 30 measurements of inclusive-jet cross sections in NC DIS:
 - \rightarrow 24 H1 data points from double-differential cross section (150 < Q^2 < 15000 GeV²)
 - \rightarrow 6 ZEUS data points from single-differential Q^2 cross section (125 < Q^2 < 10⁵ GeV²)
- NLO QCD calculations:
 - \rightarrow differential cross sections were calculated at NLO ($\mathcal{O}(\alpha_s^2)$) with:
 - pPDFs: MRST2001 sets
 - renormalisation scale: $\mu_R = E_{T,\mathrm{B}}^{\mathrm{jet}}$ of each jet
 - factorisation scale: $\mu_F = Q$
- Experimental uncertainties on combined $lpha_s(M_Z)$:
 - \rightarrow 0.0019 (obtained using Hessian method; fit sources of systematic uncertainties, eg energy scale, luminosity, model dependence)
- Theoretical uncertainties on combined $lpha_s(M_Z)$:
 - \rightarrow terms beyond NLO: 0.0021 (using Jones et al method, JHEP 122003007)
 - \rightarrow factorisation scale: 0.0010 (obtained by varying μ_F by factors 2 and 0.5 in the calculations)
 - \rightarrow pPDFs: 0.0010 (obtained by using 30 sets of MRST2001)
 - \rightarrow hadronisation: 0.0004 (obtained from different parton-shower models)

HERA combined 2007 $lpha_s(M_Z)$ value

• HERA combined 2007 $lpha_s(M_Z)$ value:

HEP 2007, Manchester, England

$lpha_s(M_Z) = 0.1198 \pm 0.0019 \; ({ m exp.}) \pm 0.0026 \; ({ m th.})$

July 19-25, 2007

 \rightarrow The results are in good agreement with the predicted running of α_s over a large range in the scale

 \rightarrow Observation of the running of α_s from HERA data alone

July 19-25, 2007

Test of the energy-scale dependence of α_s

→ Uncertainties of HERA determinations very competitive

HEP 2007, Manchester, England

Summary

• HERA combined 2007 $lpha_s(M_Z)$ value:

HERA α_s Working Group

Back-up slides

Experimental uncertainties

