

Inclusive Jet Production @ CDF

Régis Lefèvre University of Geneva

Jet Production Measurements

Well defined jet algorithm required

St calorimeter, hadron and parton levels

Cone Jet Algorithms and pQCD

• Iterative cone algorithms

- Staring from seeds, iteratively cluster particles in cones of radius R_{CONE} and look for stable cones (geometrical center = p_T -weighted centroid)

• Infrared and Collinear Safety

- Fixed order pQCD contains not fully cancelled infrared divergences
 - Inclusive jet cross section affected at NNLO
- Tevatron Run II Cone Algorithm: Midpoint
 - Uses midpoints between pairs of proto-jets as additional seeds → Infrared and collinear safety restored

• Merging/Splitting

- Emulated in NLO pQCD calculation by merging 2 partons only if they are within R' = $R_{CONE} \times R_{SEP}$ of each other
 - Arbitrary parameter R_{SEP} : prescription $R_{SEP} = 1.3$ (based on parton level approximate arguments)

k_T Algorithm

• Inclusive k_T algorithm

- Merging pairs of nearby particles in order of increasing relative p_T
 - $d_{ij} = \min(p_{T,i}^2, p_{T,j}^2) \frac{\Delta R^2}{D^2}$ • $d_{ii} = p_{Ti}^2$
- D parameter controls merging termination and characterizes size of resulting jets
- p_T classification inspired by pQCD gluon emissions
 - Infrared and Collinear safe to all orders in pQCD
 - No merging/splitting
 - No R_{SEP} issue comparing to pQCD

*

Régis Lefèvre, Inclusive Jet Production @ CDF - EPS HEP2007, Manchester, July 2007

4

The Tevatron

- Proton-antiproton collisions
- $\sqrt{s} = 1.96 \text{ TeV}$
- 36 bunches: crossing time = 396 ns
- \bigcirc Delivered ~ 1.5 fb⁻¹ since 06/2006
- Current extrapolation ~ 6 fb⁻¹ by 2009
 - 8 fb⁻¹ still the goal
 - Need increased antiproton staking rates

CDF

- Data taking efficiency ~ 85 %
- About 2.6 fb⁻¹ on tape
 - Results based on 1 to 1.13 fb⁻¹

Highly upgraded for run II

- New silicon tracking
- New drift chamber
- Upgraded muon chambers
- New plug calorimeters
- New TOF

Inclusive Jets @ the Tevatron

• Legacy from Run I

- Great interest on apparent excess at high E_T
- SM explanation
 - Gluon PDF increased at high x
 - Recent PDFs from global fit include CDF and D0 jet data from Run I (CTEQ6, MRST2001)

- Stringent test of pQCD
 Over ~ 8 orders of magnitude
- Tail sensitive to New Physics
 - Probing distances ~ 10^{-19} m
 - Production enhanced at high p_T thanks to new \sqrt{s}
- PDFs at high Q^2 & high x

Forward Jets

Jet Energy Scale

- Absolute Calibration: central calorimeter response very well reproduced by the simulation
 - E/p of isolated tracks used to tune the showering simulation (G-Flash) ⇒ Residual discrepancies taken as systematic uncertainties
 - Reasonable simulation of the p_T spectrum of the particles within a jet by PYTHIA and HERWIG fragmentation models

0.03

0.02

0.01

- \Rightarrow Induced difference on Jet Energy Scale < 1%
- Photon-jet balance
 - \Rightarrow Data and Simulation agree at 1% to 2% level
- Non uniformity versus η
 - Dijet balance
- Resolution
 - Bisector method

Régis Lefèvre, Inclusive Jet Production @ CDF – EPS HEP2007, Manchester, July 2007

300

Absolute systematic uncertainties

Fragmentation

F/r

Quadratic sum of all contributions

Inclusive Jet Production with k_T

- 5 rapidity ranges
 - Up to $|y^{\text{JET}}| = 2.1$
- D = 0.7
- $L = 1.0 \text{ fb}^{-1}$
- Good description by NLO QCD
 - Experimental uncertainties dominated by Jet Energy Scale (2 to 3%)
 - Theoretical uncertainties dominated by PDF (gluon at high x)

Phys. Rev. D 75, 092006 (2007)

Underlying Event & Hadronization Correction

Régis Lefèvre, Inclusive Jet Production @ CDF – EPS HEP2007, Manchester, July 2007

Underlying Event

Régis Lefèvre, Inclusive Jet Production @ CDF – EPS HEP2007, Manchester, July 2007

13

Energy Flow Inside Jets

Data / Theory

Régis Lefèvre, Inclusive Jet Production @ CDF - EPS HEP2007, Manchester, July 2007

Being used in new QCD global fits

See e.g. Robert Thorne's presentation at the 3rd HERA - LHC Workshop (March 2007): "Update on MRST (MSTW) fits"

Inclusive Jet Production with Midpoint

R = 0.7 (no search cone step) L = 1.13 fb⁻¹

Régis Lefèvre, Inclusive Jet Production @ CDF – EPS HEP2007, Manchester, July 2007

Conclusions

- \bullet Good agreement with pQCD using both $k_{\rm T}$ and Midpoint
 - Important test of pQCD over ~ 8 orders of magnitude
 - p_T reach extended by ~ 150 GeV/c with respect to Run I
- Careful treatment of non perturbative effects
 - Underlying Event studies
 - Jet shape measurements
- Inclusive jet data being used in new QCD global fits to better constrain the gluon PDF at high x
- Limits on new physics from dijet production being evaluated

Results from ZEUS / D0 Run I

