Exclusive processes in ep Collisions at HERA

 $\gamma^* p \rightarrow V^0 p$ $V^0 = \gamma, \rho, \phi, J / \psi, \Upsilon$

Igor Rubinskiy On behalf of H1 and ZEUS

Why are we measuring

Important parameterizations:

$$\sigma(W) \propto W^{\delta}$$

W sensitive to gluons. Increasing W is similar to going to small \boldsymbol{x}

$$\frac{d\sigma}{dt} \propto e^{-b|t|}$$

b is a characteristic of $d\sigma/d|t|$ distribution and shows the size of the interaction

• Expect δ to increase from soft (~0.2, from 'soft Pomeron' value) to hard (~0.8, from xg(x,Q^2)^2)

• Expect b to decrease from soft (~10 GeV⁻²) to hard (~4-5 GeV⁻²)

Why are we measuring?

Use QED for photon wave function.

Study properties of VM Wave Fuctions and the Gluon Density in the proton.

Mass distributions ($\rho^0,\phi,J/\psi$)

July 19, 2007 I.Rubinskiy: Exclusive processes in ep Collisions at HERA, EPS07

Mass distributions (Υ)

 $\sigma(W)$ - all VM

6

 $(Q^2 - hard scale)$

σ(W) - ρ⁰

σ**(W)** - γ (DVCS)

 $(Q^2 - hard scale)$

DVCS – Deeply Virtual Compton Scattering

δ **(Q²+M²)**

all VM, y

 $d\sigma/dt - \rho^0, \gamma$

 $(Q^2 - hard scale)$

all VM, γ

DVCS:

Beam Charge Asymmetry

DVCS:

Beam Charge Asymmetry

Since γ_{L}^{*} and γ_{T}^{*} are expected to have different W dependence, it is interesting to study R(W)

no W dependence!

ZEUS

Surprisingly, R(W) is independent of W !

 $\Rightarrow \sigma_{\text{L}},\,\sigma_{\text{T}}$ have same W dependence.

 \Rightarrow large γ^*_{T} spatial configuration seems to be suppressed.

Effective Pomeron trajectory (back to Regge)

As the scale gets harder the intercept grows and the slope gets smaller.

$\sigma(W)$ and calculations

ZEUS

Experiment is coming to the precision level where we can really improve our understanding of the vector meson WF and Gluon Density in the proton.

MRT – sensitive to different Gluon Densities

DF,FSS,KMW – sensitive to different shapes of the ρ^0 Wave Function

Summary and conclusions

- New high statistics measurements of ρ^0 electroproduction and on DVCS.
- New measurement on the Upsilon photoproduction.
- The cross section rises with W and its logarithmic derivative wrt W increases with the hard scale ($Q^2 + M_v^2$).
- The exponential slope of the t distribution decreases with Q^2 and levels off at about b = 5 GeV⁻².
- The ratio of cross sections induced by longitudinally and transversely polarised virtual photons increases with Q², but is independent of W.
- The effective Pomeron trajectory has a larger intercept and smaller slope than those extracted from soft interactions.
- All these features are compatible with expectations of perturbative QCD.
- None of the models which have been compared to the ρ^0 measurements are able to reproduce all the features of the data.

Backup

- MRT A.D. Martin, M. G. Ryskin, T. Teubner
- DF H.G.Dosch, E.Fereirra
- FSS J.R.Forshaw, R.Sandapen, G.Shaw
- KMW H.Kowalski, L.Motyka, G.Watt