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Introduction

e The principle of minimum sensitivity (PMS) is re-
viewed. It is possible to expand the optimized quantities
in terms of the quantities which exist in the standard per-
turbative series for the observables. It is then possible to

obtain the predicted higher order terms.

e The calculations indicate that at the moment, just the

NLO predicted term, is unique.

e The CORGI approach which is based on resuming the

ultraviolet terms, is introduced.

e Considering the definition of coupling constant and
also the expressions for RS invariants quantities in this ap-
proach, it is possible to obtain the predicted terms in higher

order approximations. The predicted terms are unique.



Principle of Minimum Sensitivity

e For PMS method in the NLO approximation, a QCD
observable R can be written as:

R® = a(7)(1 + ria(r)) (1)

where 7 is defined by 7 = blog(%).

e The following property always exist:
OR(®)
8(RS) |RS=0ptimized RS

=0, (2>

where (RS) involves all quantities which use to parame-
terize the scheme dependence of the observable.

e For R(?:- OR®) =0

orT ‘7‘:7_'

Using the QCD S-function :

0a?  (%(a)
or b

= —a*(1+ ca) (3)

therefore:

OR?) 0
5 = —a’(1+ca)(1+2rla) + a2§ L)

The orders a?-terms must cancel for the formal self-consistency

of the perturbation theory.



e As the implication

87“1

— =1. 5
or 5)

So p1 = 7 — ri(7) is a constant, independent of the un-

physical variable 7. The PMS criterion requires that the

Eq.(4) should vanish at 7=7.

Eq.(4), 91 = 1 & PMS Criterion =

(2)

ag = —a*(14ca)(1+2ria) + (a* x1) =0 (6)
-
_ _ B . —c

271 (1 + ca) + c]‘T:% =0 = 7= 2(1 + ca) (7)

where 71 = 71(7), a = a(T).

Finally we arrive at:

1+ Lca

e PG
ca

We should find @ in terms of a and r;. Expansion the

Ropt = a(l+7ra) = a

result in terms of a, will be predicted the 5 term.
Invariant quantity pq:

T—ri(r) =T —711(7) . (9)
T = blog(%) is equal to * in one loop so, so:
A a

1

~—ri(7) =

- — 71 (7) (10)
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From (7) and (10):

2—7“1(T)—%+2(1_T_Ca):0- (11)

Solutions:

B 1 |3ac— 2+ 2rja
= —— 12
1,2 41 c(—=14r1a) (12)

N V/9a2c? + dac — 4a?cry + 4 — 8rya + 4r?a?
c(—14ria)

e Substituting the above result in (8) give us respectivly

11 1 1
Rf) = Za—i—i(117“1—160)a2+1—6(—12807“1—|—447“%—|—6762)a3+...
(13)
2
c
Rg) = a4+ ra® + (rf — Z)a:3 + ... (14)

From two expression for a only one with + sign of square
root is accepted.( This expression will produced the cor-
rected phrase for the first and second term in series expan-
sion of R(?).

The predicted term is (r? — %) or (r2 — £L which is

unique.



NNLO predicted term

e In this case, the observable R is written as:
R®) = a(1 + ria + rad?) . (15)

For QCD-4 function we have

O R
a_i — 53(0,) — —a2(1 + ca + 62a2) . (16)

Coupling constant a is also satisfies g—g‘; = 5,3 (a) where
ﬁg(?’)(a) is the third order approximation to the 3; which
is defined by:

. a mi—i—Z
@:—M@A v (17)

e Using the self-consistency principle, lead us to:

87“1 @7‘2

[ T
87“1 87‘2
802 ¥ ’ 862 ( 8)

Solve these set of equations:

PL=T —T1,

C
Pz=T2+C2—(T1+§)27 (19)

which are RS invariant.



e PMS criterion:

(3)

822 = 62(3)(a)[1 + 2110 + 3raa’]a’

+[1 4 (¢ +2r1)ala®* =0, (20)
(3)

0;; = 63 (a)(1 + 2r1a + 3r2a®) — a® = 0(21)
2

Consequently

(G +2rc+3m) +(2m & +36)a+ (3rmc)a = 0. (22)

/a dx _ a (23)
o (I+cx+ér?)?2 1+ (c+2m)a

Doing the integral in Eq.(23) and expanding the result up
to O(a?)

¢ dz T
C Urer g o te—ga)at... (24

Equating above result to the right hand side of Eq.(23),

we will obtain

1 a(3c*a — 2¢a — 2¢aca
r = —= CL( c fL 62_ CQ?QE . (25)
2 3 — 3ca + 3c%a? — 2¢,a?

Eq.(22) and using Eq.(25):

(=38 + E2cl — 582c%a° + 3¢*a? + 362ca® — 263ca’)
—3(3 — 3ca + 3¢2a2 — 262a2)(1 + ca + G2a2)
(26)




e All that remains is to find @ and ¢ in terms of a, ¢y and
r1 and ro. Rewriting p1 and ps in two different scales, will

give us:
1 1
= (2= ) =0 27
a 1 (C_L 1) (27)
C C
ratea—(ri+ )= (te—(m+5)°) =0
(28)

By substituting the expression for 71 and 72 in the set of
Eq.(27) and Eq.(28), we are able to find @ and ¢ in terms

of a, r1, 72 and c¢».

e Final stage is to substitute the result for 71, 75 and
(3).

a in the expression for the optimized R, ;:

RY) = a(1 4 ma + 7a?); (29)

By expanding the above equation in terms of a, the pre-

dicted term for r3 can be extracted.

Since the set equations (27) and (28) are of order 6 and 3
with respect to a and ¢s, it seems that the predicted term

Is not unique.



Higher order predicated terms

The strategy to predict higher order terms is now obvi-

ous:

1) Our desired observale R has a perturbative series as:
R*HY — 41 4 ria + roa® + ... + rd") . (30)

2) QCD [-funcion will be appeared in the following form:

da 4
9. = AR — 021 + ca 4 cpa® + ... + ca®) . (31)
3) Self-consistency principle will be:

HR(k+1)
(T, ca, ..., Ck)

= O(a**2) | (32)

Reminding: The dependence of coupling constant a to ¢

parameter is given by Eq.(17):06; = g_gi _ an [gz+z

Using this principle, we will arrive at the foIIowmg partial

differentials:

[—1

9

= me Ui (89
m=0

,

o rmWi L 12

87‘1

% = ) (34)
J

0, 1<y

\

where ¢co =g =WJ =1and c; = ¢



The Wy are the expansion coefficients of the 3; = % as:

1 |
B; = z’—l——laZH(l + Wia +Wia* + ..) . (35)

Invariants quantities:

prL=T—T1,
N
= _ )
Pk =Tk + 37— Ck : (36)
where for instance
0@ = (r + 5)2 (37)
Q(B) = 7“1(62 + 3ry — 37“% — g?“l)

4) Employing PMS criterion lead us to:

OR
8(@, Cco, ..., Ck)

=0, (38)

la=a, co=c¢2, c3=c3, ...c,=Ck

which leads us to

N
N

BRI G =1) [y al oL+ m)rmciom]
(39)

/ vt @ [0 a Yo+ m)r W]
0



5) Extracting predicted higher order terms:

a) Equations (39) give us 71, 72, 73,..., 7% in terms of a,

Cc2, C3, ...., Ck.

b) Using p1, p2, p3 and ... in two different scales, it is
possible to find a, ¢, ¢3..., 75 In terms of a, r1, r9, 73,

., C2, C3, ... CL.
c) Substituting all the results in the optimized expression

for Ropt

R = a(1 4 7@ + ma® + 7a® + ..7a")  (40)

and expanding the final result in term of coupling constant

a, the required predicted term will be obtained.

It is seems that as before we will not get a unique pre-

diction.



Compete Renormalization Group Improvement
e An observable R(Q) in a standard approach:

RQ)=a+mra®+rea+- +rpa™™t +... . (41)
In new approach:
R(Q) = ag + Xaap + Xzap + -+ Xpaltt +--- . (42)

e In Eq. (41) all terms depend on renormalization scale
(1), while in Eq. (42), ap = ao(Q). X2, X3,--- are con-
stants and scheme invariants( before ps and p3).

e Self consistency principle 4+ solving simultaneously the
related partial differential equations:

ro(ri,c2) = ri®+eri+ Xo — e
r3(ri,ca,c3) = r1°+ gch + (3X5 — 2¢9)r1 + X3 — %Cg
(43)
In general the structure is
Tn(T1,C2y . oyCp) = Pp(r1,c0, .y Cne1)+Xpn—cp/(n—1) .
(44)

e The coupling constant ag represents a summation over
NLO contribution of all terms in Eq. (41) which is an RS
independent sum. It is defined as:

5 1
a05a+fr’1a2—|—(r%—|—cr1—02)a3—|—(7“£1)’—|—§cr%—202r1—503)a4—|—. .

(45)



Predicted terms in CORGI

e a) NLO approximation:

R(Q) = ag (46)
Substituting Eq.(45):
RQ)=a+ma*+ (ri+ceri—c)a’+....  (47)
Predictd term:
— 2 _ .2 51 B2
ro(pre) =ri 4+ cry —co or ro(pre) =ri + =—ry — —
Bo Bo
(43)

b) NNLO approximation:
R(Q) = agp + XQCL% (49)

Substituting Eq.(45) for ag and the related expression for
X2 (Eq.(43)) and rearrange them in terms of a, we will
obtain

R(Q) = a+ ra® + rea’

9 1
+ (7“13 + 507‘% — 2com1 — 56+ 3(re — 7% —cry + 02)r1> a’

(50)
Predictd term is:
561 o B 1 33 s P11 B
r3(pre) = r1®+==rf 202 - — 24 3(rg 12— 2
s(pre) 260 1 "B ' 2% (r: 1501%)1

(51)
This procedure can be extended to predice higher oreder
terms. The results are unique.



