Phenomenological applications of non-perturbative heavy quark effective theory

Mauro Papinutto

HEP2007, Manchester 20th July 2007

Outline:

Motivations NP HQET M_b static M_b at order 1/m B_B static

Motivations (lattice QCD)

only first-principles approach to study non-perturbative properties of QCD (hadron spectrum, matrix elements, . . .). Many systematics:

- 1. continuum limit extrapolation.
- 2. UV (lattice spacing a) and IR (volume V) cutoffs constrains quark masses \Rightarrow extrapolations to the chiral/heavy quark regime.
- 3. dynamical light quark effects numerically expensive \Rightarrow neglect them (quenched approximation \Rightarrow pin down systematics, develop new methods. all the following results are quenched)

light quarks are too light \Rightarrow extrapolate by matching with chiral effective theory.

b-quark is too heavy $(m_b a > 1)$ \Rightarrow need an effective theory for the b quark: HQET

Non-perturbative HQET

 $P_+\psi_{\rm h} = \psi_{\rm h}, \quad \overline{\psi}_{\rm h}P_+ = \overline{\psi}_{\rm h}, \quad P_+ = \frac{1}{2}(1+\gamma_0)$

action of the effective theory on a lattice [Eichten & Hill]

$$S_{\text{HQET}} = a^{4} \sum_{x} \{ \overline{\psi}_{h}(x) [D_{0} + \delta m] \psi_{h}(x) + \omega_{\text{spin}} \overline{\psi}_{h}(-\sigma \cdot \mathbf{B}) \psi_{h} + \omega_{\text{kin}} \overline{\psi}_{h}(-\frac{1}{2}\mathbf{D}^{2}) \psi_{h} + O(1/m^{2}) \}$$

also effective fields: time component of axial current in the effective theory

$$A_0^{\mathrm{HQET}}(x) = Z_{\mathrm{A}}^{\mathrm{HQET}} \overline{\psi}_{\mathrm{l}}(x) \gamma_0 \gamma_5 \psi_{\mathrm{h}}(x) + c_{\mathrm{A}}^{\mathrm{HQET}} \overline{\psi}_{\mathrm{l}} \gamma_j \overleftarrow{D}_j \psi_{\mathrm{h}} + \mathrm{O}(1/m^2)$$

where

$$\omega_{\rm kin} = {\rm O}(1/m) \,, \qquad \omega_{\rm spin} = {\rm O}(1/m) \,, \qquad c_{\rm A}^{\rm HQET} = {\rm O}(1/m)$$

under the path integral: expand the action in $1/m \to \mathcal{L}^{(\nu)}(x) = O(1/m^{\nu})$ only as insertions

$$\langle \mathcal{O} \rangle = \mathcal{Z}^{-1} \int \mathrm{D}\phi \,\mathrm{e}^{-S_{\mathrm{light}} - a^4 \sum_x \overline{\psi}_{\mathrm{h}}(x) [D_0 + \delta m] \psi_{\mathrm{h}}(x)} \, \mathcal{O} \, \left\{ 1 - a^4 \sum_x \mathcal{L}^{(1)}(x) + \dots \right\}$$

With this definition of the effective theory we have (at a given order in 1/m)

- renormalizability ≡ existence of the continuum limit due to universality (independence of details of the regularization)
- continuum asymptotic expansion in 1/m

Note that these properties are <u>not automatic</u> for an effective field theory. ChPT shares these properties; NRQCD does not.

Difference to ChPT: as $1/m \rightarrow 0$ interactions are <u>not</u> turned off \Rightarrow need lattice formulation to evaluate it non-perturbatively in g^2

Matching between QCD and HQET

bare couplings of HQET ($m_{\text{bare}}, \omega_{\text{kin}}, \omega_{\text{spin}}, c_{\text{A}}^{\text{HQET}}, Z_{\text{A}}^{\text{HQET}}, \dots$) computable by matching with QCD \Rightarrow transfer of predictivity QCD \rightarrow HQET

this has to be done non-perturbatively: ${\cal O}$ generical field

e.g.
$$\mathcal{O}_{R}^{d=5} = Z_{\mathcal{O}} \left[\mathcal{O}^{d=5} + \sum_{k} c_{k} \mathcal{O}_{k}^{d=4} \right] \qquad c_{k} = \frac{c_{k}^{(0)} + c_{k}^{(1)} g_{0}^{2} + \dots}{a}$$

if c_k computed at a finite order in g^2 , there is no continuum limit!

$$\Delta c_k \sim \frac{g_0^{2(l+1)}}{a} \sim \frac{1}{a \ [\ln(a\Lambda)]^{l+1}} \xrightarrow{a \to 0} \infty \qquad \begin{array}{c} \text{para}\\ l \text{-loc} \end{array}$$

arameters computed to loops with l arbitrary

Non-pertubative matching: $\Phi_k^{\text{QCD}} = \Phi_k^{\text{HQET}}$, $k = 1, 2, \dots, N_{\text{HQET}}$

requires to be able to simulate the b-quark with finite mass!

Non-perturbative matching between QCD and HQET

The trick: start in small volume, $L = L_1 \approx 0.4 \, \text{fm} \Rightarrow m_b a \ll 1 \, \& 1/(m_b L) \ll 1$

HQET-parameters from QCD observables in small volume at small lattice spacing (using the Schrödinger Functional)

Physical observables (e.g. $B_{\rm B_s}$, $F_{\rm B_s}$) need a large volume, such that the B-meson fits comfortably: $L \approx 4L_1 \approx 1.6 \,{\rm fm}$

Connection achieved by recursive method: [Lüscher *et al.*, 91; ALPHA 1993-2003]

$$\Phi_k^{\mathrm{HQET}}(2L) = F_k\left(\left\{\Phi_j^{\mathrm{HQET}}(L), j = 1, \dots, N\right\}\right)$$

fully non-perturbative formulation of HQET (including matching) [Heitger & Sommer, 2004]

continuum limit can be taken in all steps

Example: $M_{\rm b}$ static (at order $1/m^0$)

Heitger & Sommer, 2004; M. Della Morte, N. Garron, M. Papinutto and R. Sommer, 2005-2006

finite volume B-meson "mass":

$$\Gamma = -\partial_0 \log[f_A(x_0)]_{x_0 = L/2, T = L}$$

$$\Phi_2^{\text{QCD}}(L, M) = L\Gamma(L, M), \quad \Phi^{\text{HQET}}(L, M) = L\left[\Gamma^{\text{stat}}(L) + m_{\text{bare}}\right]$$

$$L_2m_{\text{B}} = L_2E_{\text{stat}} + L_2m_{\text{bare}} \quad \text{B-meson mass} \left(E_{\text{stat}} = \lim_{L \to \infty} \Gamma^{\text{stat}}(L)\right)$$

$$= L_2E_{\text{stat}} - L_2\Gamma^{\text{stat}}(L_1) + \frac{L_2}{L_1}\Phi^{\text{HQET}}(L_1, M_{\text{b}})$$

$$= L_2E_{\text{stat}} - L_2\Gamma^{\text{stat}}(L_1) + \frac{L_2}{L_1}\Phi_2^{\text{QCD}}(L_1, M_{\text{b}})$$

$$= L_2E_{\text{stat}} - L_2\Gamma^{\text{stat}}(L_2) + \underbrace{L_2\Gamma^{\text{stat}}(L_2) - L_2\Gamma^{\text{stat}}(L_1)}_{=\sigma_{\text{m}}(\bar{g}^2(L_1))} + \frac{L_2}{L_1}\Phi_2^{\text{QCD}}(L_1, M_{\text{b}})$$

- \rightarrow Solve the above equation for $M_{\rm b}$ (the RGI b-quark mass)
- fix $L_1 \approx 0.4 \, \text{fm}$ (from $\bar{g}^2(L_1)$)
- light quark mass = zero
- fix RGI quark masses of heavy quark (3 values around $M_{\rm b}$)
- In ∞ volume ($L_{\infty} = 4L_1$) light quark mass = strange quark mass

Examples of continuum extrapolations

$M_{\rm b}$ static

in the static approximation solve:

$$\underbrace{L_2 m_{\mathrm{B}}}_{\mathrm{experiment}} - L_2 [E_{\mathrm{stat}} - \Gamma^{\mathrm{stat}}(L_1)] - \sigma_{\mathrm{m}}(\bar{g}^2(L_1)) = 2\Phi_2^{\mathrm{QCD}}(L_1, M_{\mathrm{b}})$$

 $M_{
m b}~{
m at~order}~1/m~[$ M. Della Morte, N. Garron, M. Papinutto and R. Sommer, 2005-2006] $O(1) \qquad m_{\text{bare}}(\text{or } \delta m) \quad \text{of } \psi_h \psi_h$ coefficients in the action: $\begin{array}{cc} \mathrm{O}(1/m) & \omega_{\mathrm{kin}} & \mathrm{of} & \overline{\psi}_{\mathrm{h}}(-\frac{1}{2}\mathbf{D}^{2})\psi_{\mathrm{h}} \\ \mathrm{O}(1/m) & \omega_{\mathrm{spin}} & \mathrm{of} & \overline{\psi}_{\mathrm{h}}(-\sigma \cdot \mathbf{B})\psi_{\mathrm{h}} \end{array}$ $\omega_{
m spin}$ cancels in spin averaged quantities $= E^{\mathrm{stat}} + m_{\mathrm{bare}} + \omega_{\mathrm{kin}} E^{\mathrm{kin}}$ ∞ volume $m_{
m B}$ Matching 1 $\Gamma^{\text{QCD}}(L, M) = \Gamma^{\text{stat}}(L) + m_{\text{bare}} + \omega_{\text{kin}}\Gamma^{\text{kin}}(L) = \frac{\Phi_2^{\text{HQET}}}{r}$ Matching 2 $\Phi_1^{\text{QCD}}(L) = \omega_{\text{kin}} R_1^{\text{kin}}(L) = \Phi_1^{\text{HQET}}$ $m_{\rm B} = \left[E^{\rm stat} - \Gamma^{\rm stat}(L) \right] + \Gamma^{\rm QCD}(L, M) + \left[\frac{\Phi_1^{\rm QCD}(L)}{R_1^{\rm kin}(L)} (E^{\rm kin} - \Gamma^{\rm kin}(L)) \right]$ $(m_{\text{bare}}, \omega_{\text{kin}} \text{ eliminated})$. Set $L = L_2$ and use the SSF to relate L_2 with L_1 : $\Phi_1(2L) = \sigma_1^{\rm kin}(u)\Phi_1(L),$ $\Phi_2(2L) = 2\Phi_2(L) + \sigma_m(u) + \sigma_2^{kin}(u)\Phi_1(L)$ $\Rightarrow m_{\rm B} = m_{\rm B}^{\rm stat} + m_{\rm B}^{(1a)} + m_{\rm B}^{(1b)}, \qquad m_{\rm B}(M_{\rm b}^{\rm stat} + M_{\rm b}^{(1a)} + M_{\rm b}^{(1b)}) = m_{\rm B}^{\rm exp}$ M. Papinutto, HEP2007 Manchester/10

Continuum extrapolations at order 1/m

Most difficult steps of the computation:

$$m_{\rm B}^{(1a)}(M) = \frac{1}{L_2} \sigma_2^{\rm kin}(u_1) \Phi_1(L_1, M) \qquad m_{\rm B}^{(1b)}(M) = \frac{(E^{\rm kin} - \Gamma_1^{\rm kin}(L_2))}{R_1^{\rm kin}} \Phi_1(L_2, M)$$

In $\sigma_2^{\text{kin}}(u_1)$ and $(E^{\text{kin}} - \Gamma_1^{\text{kin}}(L_2))$ cancellation of $1/a^2$ power divergences (extrapolation linear in a)

Results at order 1/m

then the 1/m correction to $M_{\rm b}$ is

$$M_{\rm b}^{(1)} = M_{\rm b}^{(1a)} + M_{\rm b}^{(1b)}$$

$$M_{b}^{(1a)} = -\frac{\sigma_{2}^{\rm kin}(\bar{g}^{2}(L_{1}))\Phi_{1}(L_{1}, M_{b}^{\rm stat})}{SL_{2}} = -30(15) \,\text{MeV}$$

$$M_{b}^{(1b)} = -\frac{(E^{\rm kin} - \Gamma_{1}^{\rm kin}(L_{2}))\Phi_{1}(L_{2}, M)}{SR_{1}^{\rm kin}} = -5(33) \,\text{MeV}$$

and in the $\overline{\mathrm{MS}}$ scheme:

$$m_{\rm b}(m_{\rm b}) = m_{\rm b}^{\rm stat} + m_{\rm b}^{(1)}$$

 $m_{\rm b}^{\rm stat} = 4.35(6) \,\text{GeV} \,, \quad m_{\rm b}^{(1)} = -0.02(2) \,\text{GeV} \,.$

agrees with PDG, despite quenched approximation.

check by using different matching conditions: $f_{\rm A}$ needs ${\rm O}(1/m)$ -correction to $A_0^{\rm stat}$ \Rightarrow more step scaling functions \Rightarrow final result agrees up to ${\rm O}(1/m^2)$ -corrections

 $B_B \; {
m static} \; \left[{
m F. \; Palombi, \; M. \; Papinutto, \; C. \; Pena \; and \; H. \; Wittig, \; 2005-2007} \;
ight]$

 $\Delta B = 2 \text{ oscillations: } \langle \bar{B}_q^0 | \mathcal{O}_{LL}^{\Delta B=2} | B_q^0 \rangle = \frac{8}{3} B_{Bq} f_{Bq}^2 m_{Bq}^2 \text{ relevant for UT analysis}$ Combine relativistic simulations with $m_q \approx m_c$ and the static limit of HQET to interpolate at m_b [Becirevic, Gimenez, Martinelli, Papinutto, Reyes 2002] or compute 1/m correction to static HQET (to be done)

$$\begin{split} \langle \bar{B}_{q}^{0} | \mathcal{O}_{\rm LL}^{\Delta B=2}(m_{\rm b}) | B_{q}^{0} \rangle &= C_{1}(m_{\rm b}, \mu) \langle \bar{B}_{q}^{0} | \hat{Q}_{1}^{+}(\mu) | B_{q}^{0} \rangle_{\rm HQET} \\ &+ C_{2}(m_{\rm b}, \mu) \langle \bar{B}_{q}^{0} | \hat{Q}_{2}^{+}(\mu) | B_{q}^{0} \rangle_{\rm HQET} + \mathcal{O}\left(1/m_{\rm b}\right) \end{split}$$

for the moment: non-perturbative renormalization in quenched static HQET. Computation of bare matrix elements: on going.

Wilson like fermions are particularly suitable for unquenched simulations but break chirality \Rightarrow renormalization pattern of composite operators complicates with respect to the continuum (mixing with operators of different naïve chirality)

$$\mathcal{O}_{\Gamma_1\Gamma_2}^{\pm} = \frac{1}{2} \left[(\bar{\psi}_{\mathrm{h}}\Gamma_1\psi_1)(\bar{\psi}_{\bar{\mathrm{h}}}\Gamma_2\psi_2) \pm (\bar{\psi}_{\mathrm{h}}\Gamma_1\psi_2)(\bar{\psi}_{\bar{\mathrm{h}}}\Gamma_2\psi_1) \right]$$

$$(Q_1^+, Q_2^+) = (\mathcal{O}_{VV+AA}^+, \mathcal{O}_{SS+PP}^+) \qquad (\mathcal{Q}_1^+, \mathcal{Q}_2^+) = (\mathcal{O}_{VA+AV}^+, \mathcal{O}_{SP+PS}^+)$$

Heavy Quark Spin simmetry + H(3) spatial rotations + Time Reversal \Rightarrow

$$(Q_1'^+, Q_2'^+) = (Q_1^+, Q_1^+ + 4Q_2^+) \qquad (Q_1'^+, Q_2'^+) = (Q_1^+, Q_1^+ + 4Q_2^+)$$

have simplified mixing pattern. The parity odd sector renormalizes multiplicatively

 \Rightarrow use HQET for the b quark and a Wilson-like regularization ("twisted mass QCD") for the light quarks. For the renormalized matrix elements it holds:

$$\langle \bar{B}^0_q | \hat{Q'}^+_k(\mu) | B^0_q \rangle_{\mathrm{HQET}} = \mathcal{Z'}^+_k(g_0, a\mu) \langle \bar{B}^0_q | \mathcal{Q'}^+_k(a) | B^0_q \rangle_{\mathrm{tmQCD}}^{\alpha = \pi/2}$$

 $\mathcal{Z}'_k^+(g_0, a\mu)$ and its running $\sigma_k^+(u) = U'_k^+(\mu, \mu/2) = \lim_{a \to 0} \frac{\mathcal{Z}'_k^+(g_0, a\mu/2)}{\mathcal{Z}'_k^+(g_0, a\mu)} \Big|_{u \equiv \bar{g}^2(\mu)}^{m=0}$ computed non-perturbatively in the SF scheme (where $\mu = 1/L$)

 $\Rightarrow \hat{Z'}_{k,\text{RGI}}^{+}(g_0) = U'_{k}^{+}(\infty,\mu_{\text{had}}) \mathcal{Z'}_{k}^{+}(g_0,a\mu_{\text{had}}) \text{ computed non-perturbatively}$

M. Papinutto, HEP2007 Manchester/15

Conclusions and outlook

- In HQET, renormalization of O(1) and O(1/m) terms carried out nonperturbatively and continuum limit taken (for the first time: case of $M_{\rm b}$).
- next steps: $m_{\rm B^*} m_{\rm B} (\propto \omega_{\rm spin})$ and $F_{\rm B}$ at O(1/m) (needed $\Phi_i, i = 1, ..., 4$ to be matched in order to determine the HQET couplings). $F_{\rm B}$ static and interpolation using $F_{\rm PS}$ around $F_{\rm D}$ already performed[ALPHA 2003]
- extension to $N_{\rm f} > 0$: no new problems expected (recent progress in dynamical Wilson-like fermion algorithms [M. Lüscher, 2003-2007; Hasenbusch 2002; Urbach *et al.* 2005]).
- more complicates observables: B_B . non-perturbative renormalization performed. Matrix elements computation still on going. Matching to QCD perturbative. Next steps: non-perturbative matching, O(1/m) terms.
- Further observables $B \rightarrow \pi l \nu ~(\rightarrow V_{\rm ub}), \ldots$