Non-abelian vortices in $\mathcal{N} = 2$ gauge theories

Luca Ferretti

SISSA/ISAS

HEP 2007 - Manchester, 20 July 2007

In collaboration with

M.Eto,S.B.Gudnason,K.Konishi,G.Marmorini,M.Nitta,K.Ohashi,N.Yokoi,W.Vinci

1 Introduction

- Simplest example: $SU(2) \times U(1)$
- Vortex solutions in U(N)
- 2 Non-abelian vortices in $SO(N) \times U(1)$
 - Construction of vortex solutions
 - Topology and moduli spaces
- 3 Vortices and monopoles
 Framework of the correspondence
 Explicit examples

4 Conclusions

Non-abelian vortices in $SO(N) \times U(1)$ Vortices and monopoles Conclusions Simplest example: $SU(2) \times U(1)$ Vortex solutions in U(N)

Simplest example: $SU(2) \times U(1)$ theory

- $\mathcal{N} = 2$ theory with gauge group $SU(2) \times U(1)$
- Fayet-Iliopoulos term ξ
- ► N_f massless hypermultiplets q_A , \tilde{q}_A in $(\underline{2}, 1), (\underline{\bar{2}}, -1)$ reps
- ► U(N_f) flavor symmetry

Bosonic part of the Lagrangian (neglecting ϕ^0, ϕ^b):

$$\mathcal{L}_{bos} = -\frac{1}{4g_1^2} F^{0\mu\nu} F^0_{\mu\nu} - \frac{1}{4g_2^2} F^{b\mu\nu} F^b_{\mu\nu} + \mathcal{D}_{\mu} q^{\dagger}_A \mathcal{D}^{\mu} q^A + \mathcal{D}_{\mu} \tilde{q}_A \mathcal{D}^{\mu} \tilde{q}^{A\dagger} + -\frac{g_2^2}{8} \left| q^{\dagger}_A t^b q^A - \tilde{q}_A t^b \tilde{q}^{A\dagger} \right|^2 - \frac{g_1^2}{24} \left| q^{\dagger}_A q^A - \tilde{q}_A \tilde{q}^{A\dagger} \right|^2 - \frac{g_2^2}{2} \left| \tilde{q}_A t^b q^A \right|^2 - \frac{g_1^2}{6} \left| \tilde{q}_A q^A - \xi \right|^2$$
Higgs phase: color-flavor locked vacuum $q_i^A = \tilde{q}_i^{A\dagger} = \sqrt{\frac{\xi}{2}} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$
Form of the vacuum invariant under $SU(2)_{C+F}$ global symmetry

Non-abelian vortices in $SO(N) \times U(1)$ Vortices and monopoles Conclusions Simplest example: $SU(2) \times U(1)$ Vortex solutions in U(N)

Simplest example: $SU(2) \times U(1)$ theory

- $\mathcal{N} = 2$ theory with gauge group $SU(2) \times U(1)$
- Fayet-Iliopoulos term ξ
- ► N_f massless hypermultiplets q_A , \tilde{q}_A in $(\underline{2}, 1), (\underline{\bar{2}}, -1)$ reps
- $U(N_f)$ flavor symmetry

Bosonic part of the Lagrangian (neglecting ϕ^0, ϕ^b):

$$\mathcal{L}_{bos} = -\frac{1}{4g_1^2} F^{0\mu\nu} F^0_{\mu\nu} - \frac{1}{4g_2^2} F^{b\mu\nu} F^b_{\mu\nu} + \mathcal{D}_{\mu} q^{\dagger}_A \mathcal{D}^{\mu} q^A + \mathcal{D}_{\mu} \tilde{q}_A \mathcal{D}^{\mu} \tilde{q}^{A\dagger} + -\frac{g_2^2}{8} \left| q^{\dagger}_A t^b q^A - \tilde{q}_A t^b \tilde{q}^{A\dagger} \right|^2 - \frac{g_1^2}{24} \left| q^{\dagger}_A q^A - \tilde{q}_A \tilde{q}^{A\dagger} \right|^2 - \frac{g_2^2}{2} \left| \tilde{q}_A t^b q^A \right|^2 - \frac{g_1^2}{6} \left| \tilde{q}_A q^A - \xi \right|^2$$
Higgs phase: color-flavor locked vacuum $q_i^A = \tilde{q}_i^{A\dagger} = \sqrt{\frac{\xi}{2}} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$
Form of the vacuum invariant under $SU(2)_{C+F}$ global symmetry

Non-abelian vortices in $SO(N) \times U(1)$ Vortices and monopoles Conclusions Simplest example: $SU(2) \times U(1)$ Vortex solutions in U(N)

Non-abelian vortex equations

Look for solutions not depending on *z*, *t*. Ansatz $q = \tilde{q}^{\dagger}$. Bogomolny bound for the tension $T \ge \left| \int d^2x \frac{\xi}{2\sqrt{3}} \varepsilon_{ij} F_{ij}^0 \right|$

Non-abelian BPS equations:

$$\left\{egin{array}{l} F^b_{ij}+rac{g_2^2}{2}arepsilon_{ij}q^{\dagger}A^bq^A=0\ F^0_{ij}+rac{g_1^2}{\sqrt{3}}arepsilon_{ij}(q^{\dagger}_Aq^A-\xi)=0\ \mathcal{D}_iq^A+iarepsilon_{ij}\mathcal{D}_jq^A=0 \end{array}
ight.$$

Ansatz for the vortex solution

$$\left\{ egin{array}{l} A^{a}_{i}=-h_{a}(r)arepsilon_{ij}rac{r_{i}}{r^{2}} \ & \ q=egin{pmatrix} e^{in_{1}artheta}arphi_{1}(r) & 0 \ 0 & e^{in_{2}artheta}arphi_{2}(r) \end{pmatrix} \end{array}
ight.$$

$$h_{1}(r) = h_{2}(r) = 0$$

$$h_{3}(0) = 0, \ h_{3}(\infty) = n_{1} - n_{2}$$

$$h_{0}(0) = 0, \ h_{0}(\infty) = \sqrt{3}(n_{1} + n_{2})$$

$$\varphi_{1}(\infty) = \varphi_{2}(\infty) = \sqrt{\frac{\xi}{2}}$$

Non-abelian vortices in $SO(N) \times U(1)$ Vortices and monopoles Conclusions Simplest example: $SU(2) \times U(1)$ Vortex solutions in U(N)

Non-abelian vortex equations

Look for solutions not depending on *z*, *t*. Ansatz $q = \tilde{q}^{\dagger}$. Bogomolny bound for the tension $T \ge \left| \int d^2x \frac{\xi}{2\sqrt{3}} \varepsilon_{ij} F_{ij}^0 \right|$

Non-abelian BPS equations:

Ansatz for the vortex solution

$$\left\{ egin{array}{l} A^{a}_{i}=-h_{a}(r)arepsilon_{ij}rac{r_{j}}{r^{2}} \ q=egin{pmatrix} e^{in_{1}artheta}arphi_{1}(r) & 0 \ 0 & e^{in_{2}artheta}arphi_{2}(r) \end{pmatrix}
ight.$$

$$h_{1}(r) = h_{2}(r) = 0$$

$$h_{3}(0) = 0, \ h_{3}(\infty) = n_{1} - n_{2}$$

$$h_{0}(0) = 0, \ h_{0}(\infty) = \sqrt{3}(n_{1} + n_{2})$$

$$\varphi_{1}(\infty) = \varphi_{2}(\infty) = \sqrt{\frac{\xi}{2}}$$

Non-abelian vortices in $SO(N) \times U(1)$ Vortices and monopoles Conclusions Simplest example: $SU(2) \times U(1)$ Vortex solutions in U(N)

Non-abelian vortex solutions

➤ Solutions are classified by positive integers (n₁, n₂). Their tension is

 $T=2\pi\xi\left|n_{1}+n_{2}\right|$

- ► Topological classification π₁ (SU(2)×U(1) Z₂) = π₁(U(2)) = Z Minimal loops: n₁ + n₂ = 1, half winding in U(1) and half in SU(2)
- From every solution we can build other solutions by applying $SU(2)_{C+F}$ transformations $q'(r, \vartheta) = U_{C+F}q(r, \vartheta)U_{C+F}^{\dagger}$
- ▶ $SU(2)_{C+F}$ transformations interpolate between fundamental vortices (1,0) and (0,1) → solutions in $SU(2)/U(1) \cong \mathbb{C}P^1$
- Moduli space of fundamental vortices (T = 2πξ) is C × CP¹ (position × internal d.o.f.) with SU(2) isometry

Non-abelian vortices in $SO(N) \times U(1)$ Vortices and monopoles Conclusions Simplest example: $SU(2) \times U(1)$ Vortex solutions in U(N)

Non-abelian vortex solutions

➤ Solutions are classified by positive integers (n₁, n₂). Their tension is

$$T=2\pi\xi\left|n_{1}+n_{2}\right|$$

- ► Topological classification $\pi_1\left(\frac{SU(2) \times U(1)}{\mathbb{Z}_2}\right) = \pi_1(U(2)) = \mathbb{Z}$ Minimal loops: $n_1 + n_2 = 1$, half winding in U(1) and half in SU(2)
- From every solution we can build other solutions by applying SU(2)_{C+F} transformations q'(r, ϑ) = U_{C+F}q(r, ϑ)U[†]_{C+F}
- SU(2)_{C+F} transformations interpolate between fundamental vortices (1,0) and (0,1) → solutions in SU(2)/U(1) ≅ CP¹
- Moduli space of fundamental vortices (T = 2πξ) is C × CP¹ (position × internal d.o.f.) with SU(2) isometry

on-abelian vortices in $SO(N) \times U(1)$ Vortices and monopoles Conclusions Simplest example: $SU(2) \times U(1)$ Vortex solutions in U(N)

Non-abelian vortices in U(N)

■ Ansatz
$$q = \begin{pmatrix} e^{in_1\vartheta}\varphi_1(r) & 0 & 0 & \cdots \\ 0 & e^{in_2\vartheta}\varphi_2(r) & 0 & \cdots \\ 0 & 0 & e^{in_3\vartheta}\varphi_3(r) & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

- Solutions classified by positive integers $(n_1, n_2, n_3...)$ with tension $T = 2\pi\xi |n_1 + n_2 + n_3 + ...|$
- Topological classification $\pi_1\left(\frac{SU(N) \times U(1)}{\mathbb{Z}_N}\right) = \pi_1(U(N)) = \mathbb{Z}$ Minimal loops: $n_1 + n_2 + n_3 + \ldots = 1$, 1/N winding in U(1) and 1/N in SU(N)
- $SU(N)_{C+F}$ transformations on vortices
- Fundamental vortices: (1, 0, 0...) and its SU(N)_{C+F} orbit Moduli space C × CP^{N-1} with SU(N) isometry (Fubini-Study metric)

Non-abelian vortices in $SO(N) \times U(1)$ Vortices and monopoles Conclusions

Simplest example: $SU(2) \times U(1)$ Vortex solutions in U(N)

Moduli spaces of U(N) non-abelian vortices

Moduli matrix approach

BPS equations for vortices:

 $(\mathcal{D}_1 + i\mathcal{D}_2) \ q = 0, \quad F_{12}^{(0)} + \frac{e^2}{2} \left(c \mathbf{1}_N - q \ q^{\dagger}\right) = 0, \quad F_{12}^{(a)} + \frac{g_N^2}{2} \ q_i^{\dagger} \ t^a \ q_i = 0$ These equations can be solved as

$$q = S^{-1}(z, \bar{z}) H_0(z), \quad A_1 + i A_2 = -2 i S^{-1}(z, \bar{z}) \bar{\partial}_z S(z, \bar{z})$$

where *S* is an *N* × *N* invertible matrix over the whole *z* plane, and H_0 (moduli matrix) is holomorphic in *z*, defined modulo a nonsingular holomorphic *N* × *N* matrix *V*(*z*): $H_0(z) \rightarrow V(z) H_0(z), \quad S(z, z^*) \rightarrow V(z) S(z, z^*)$ One more equation for $\Omega = S S^{\dagger}$, but expected to give no additional moduli: $\partial_z (\Omega^{-1}\partial_{\overline{z}} \Omega) = -\frac{g_N^2}{2} \operatorname{Tr} (t^a \Omega^{-1} q q^{\dagger}) t^a - \frac{e^2}{4N} \operatorname{Tr} (\Omega^{-1} q q^{\dagger} - \mathbf{1})$ Moduli space for composites of k minimal vortices ($T = 2\pi \xi k$): $\{H_0(z) | \det(H_0) \sim z^k, z \rightarrow \infty\} / \{V(z) | \det(V) = const \neq 0\}$

Non-abelian vortices in $SO(N) \times U(1)$ Vortices and monopoles Conclusions Simplest example: $SU(2) \times U(1)$ Vortex solutions in U(N)

Moduli spaces of U(N) non-abelian vortices

Moduli matrix approach

BPS equations for vortices:

 $(\mathcal{D}_1 + i\mathcal{D}_2) \ q = 0, \quad F_{12}^{(0)} + \frac{e^2}{2} \left(c \mathbf{1}_N - q \ q^{\dagger}\right) = 0, \quad F_{12}^{(a)} + \frac{g_N^2}{2} \ q_i^{\dagger} \ t^a \ q_i = 0$ These equations can be solved as

$$q = S^{-1}(z, \bar{z}) H_0(z), \quad A_1 + i A_2 = -2 i S^{-1}(z, \bar{z}) \bar{\partial}_z S(z, \bar{z})$$

where *S* is an *N* × *N* invertible matrix over the whole *z* plane, and H_0 (moduli matrix) is holomorphic in *z*, defined modulo a nonsingular holomorphic *N* × *N* matrix *V*(*z*): $H_0(z) \rightarrow V(z) H_0(z), \quad S(z, z^*) \rightarrow V(z) S(z, z^*)$ One more equation for $\Omega = S S^{\dagger}$, but expected to give no additional moduli: $\partial_z (\Omega^{-1} \partial_{\overline{z}} \Omega) = -\frac{g_N^2}{2} \operatorname{Tr} (t^a \Omega^{-1} q q^{\dagger}) t^a - \frac{e^2}{4N} \operatorname{Tr} (\Omega^{-1} q q^{\dagger} - \mathbf{1})$ Moduli space for composites of k minimal vortices $(T = 2\pi\xi k)$: $\{H_0(z) | \det(H_0) \sim z^k, z \rightarrow \infty\} / \{V(z) | \det(V) = const \neq 0\}$

Non-abelian vortices in $SO(N) \times U(1)$ Vortices and monopoles Conclusions Simplest example: $SU(2) \times U(1)$ Vortex solutions in U(N)

U(N) vortices of higher winding

Physically det(H_0) ~ $(z - z_1)(z - z_2)(z - z_3)$... describes position of vortices Consider the case of coincident vortices: U(2) example

In k = 2 case, moduli space has three patches

$$\mathcal{H}_0 \simeq \left(egin{array}{cc} z^2 & 0 \ -a'z - b' & 1 \end{array}
ight); \quad \left(egin{array}{cc} z - \phi & \eta \ ar\eta & z + \phi \end{array}
ight); \quad \left(egin{array}{cc} 1 & -az - b \ 0 & z^2 \end{array}
ight)$$

with constraint $\phi^2 + \eta \bar{\eta} = 0$ (*Z*₂ singularity at the origin) These patches cover the manifold $W \mathbb{C}P^2_{(2,1,1)}$

In U(N) theories, moduli space for k = 2 coincident vortices is $WGr_{N+1,2}^{(1,\dots,1,0)}$ where $Gr_{N+1,2} \simeq \frac{SU(N+1)}{SU(N-1) \times SU(2) \times U(1)}$

Non-abelian vortices in $SO(N) \times U(1)$ Vortices and monopoles Conclusions Simplest example: $SU(2) \times U(1)$ Vortex solutions in U(N)

U(N) vortices of higher winding

Physically det(H_0) ~ $(z - z_1)(z - z_2)(z - z_3)$... describes position of vortices Consider the case of coincident vortices: U(2) example

In k = 2 case, moduli space has three patches

$$\mathcal{H}_0 \simeq \left(egin{array}{cc} z^2 & 0 \ -a'z - b' & 1 \end{array}
ight); \quad \left(egin{array}{cc} z - \phi & \eta \ ar\eta & z + \phi \end{array}
ight); \quad \left(egin{array}{cc} 1 & -az - b \ 0 & z^2 \end{array}
ight)$$

with constraint $\phi^2 + \eta \bar{\eta} = 0$ (*Z*₂ singularity at the origin) These patches cover the manifold $W \mathbb{C}P^2_{(2,1,1)}$

In U(N) theories, moduli space for k = 2 coincident vortices is $WGr_{N+1,2}^{(1,\dots,1,0)}$ where $Gr_{N+1,2} \simeq \frac{SU(N+1)}{SU(N-1) \times SU(2) \times U(1)}$

Non-abelian vortices in $SO(N) \times U(1)$ Vortices and monopoles Conclusions

Simplest example: $SU(2) \times U(1)$ Vortex solutions in U(N)

Developments in the study of non-abelian vortices

- Works in $\mathcal{N} = 2 SU(N)$ theories:
 - BPS local and semilocal vortex solutions
 - Complete moduli spaces obtained with different tecniques (but unknown metric for higher winding)
 - Correspondence between BPS states in 2d and 4d field theories: Kinks on the worldsheet ↔ Vortex junctions ↔ Monopoles in the 4d theory
 - Reconnection of cosmic strings
 - Monopole confinement
- Recent directions:
 - Non-abelian vortices in SO(N) theories
 - Non-abelian vortices in $\mathcal{N} = 1$ SQCD and non-SUSY theories

Non-abelian vortices in $SO(N) \times U(1)$ Vortices and monopoles Conclusions

Simplest example: $SU(2) \times U(1)$ Vortex solutions in U(N)

Developments in the study of non-abelian vortices

- Works in $\mathcal{N} = 2 SU(N)$ theories:
 - BPS local and semilocal vortex solutions
 - Complete moduli spaces obtained with different tecniques (but unknown metric for higher winding)
 - Correspondence between BPS states in 2d and 4d field theories: Kinks on the worldsheet ↔ Vortex junctions ↔ Monopoles in the 4d theory
 - Reconnection of cosmic strings
 - Monopole confinement
- Recent directions:
 - Non-abelian vortices in SO(N) theories
 - Non-abelian vortices in $\mathcal{N} = 1$ SQCD and non-SUSY theories

Construction of vortex solutions Topology and moduli spaces

Non-abelian vortices in $SO(N) \times U(1)$

 $\mathcal{N} = 2$ theory with gauge group $SO(2N) \times U(1)$ and fields $q_A, \tilde{q}_A^{\dagger}$ in the (<u>2N</u>, +1) representation

$$\mathcal{L} = -\frac{1}{4g_1^2} F^{0\mu\nu} F^0_{\mu\nu} - \frac{1}{4g_{2N}^2} F^{b\mu\nu} F^b_{\mu\nu} + |\mathcal{D}_{\mu}q_A|^2 + |\mathcal{D}_{\mu}\tilde{q}^{\dagger}_A|^2 \\ - \frac{g_{2N}^2}{2} |q_A^{\dagger}t^b q_A - \tilde{q}_A t^b \tilde{q}^{\dagger}_A|^2 - 2g_{2N}^2 |\tilde{q}_A t^b q_A|^2 \\ - \frac{g_1^2}{4} |q_A^{\dagger}q_A - \tilde{q}_A \tilde{q}^{\dagger}_A|^2 - g_1^2 |\tilde{q}_A q_A - \xi|^2 + \cdots$$

$$\langle q \rangle = \langle \tilde{q}^{\dagger} \rangle = \sqrt{\frac{\xi}{2N}} \cdot \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 & 0 & 0 & \cdots \\ i & -i & 0 & 0 & \cdots \\ 0 & 0 & 1 & 1 & \cdots \\ 0 & 0 & i & -i & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

Vacuum invariant under $SO(2N)_{C+F}$

Construction of vortex solutions Topology and moduli spaces

Ansatz for the solutions

 $A_i = h_a(r) t^a \varepsilon_{ij} \frac{r_j}{r^2}$

 t^a generators of SO(2N) Cartan subalgebra

$$q(r,\vartheta) = \frac{1}{\sqrt{2}} \begin{pmatrix} e^{in_1^+\vartheta}\varphi_1^+(r) & e^{in_1^-\vartheta}\varphi_1^-(r) & 0 & 0 & \dots \\ ie^{in_1^+\vartheta}\varphi_1^+(r) & -ie^{in_1^-\vartheta}\varphi_1^-(r) & 0 & 0 & \dots \\ 0 & 0 & e^{in_2^+\vartheta}\varphi_2^+(r) & e^{in_2^-\vartheta}\varphi_2^-(r) & \dots \\ 0 & 0 & ie^{in_2^+\vartheta}\varphi_2^+(r) & -ie^{in_2^-\vartheta}\varphi_2^-(r) & \dots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

Finite-energy conditions: $\varphi^{\pm}_{a}(\infty)$ =

 $\varphi_a^{\pm}(\infty) = \sqrt{rac{\xi}{2N}}$

$$n_a^{\pm} = n^{(0)} \mp n^{(a)} , \qquad n^{(0)} \equiv rac{1}{\sqrt{2}} h_0(\infty) ; \quad n^{(a)} \equiv rac{1}{\sqrt{2}} h_a(\infty)$$

 $\Rightarrow N_0 = n_a^+ + n_a^-$, $T = 2\pi\xi |N_0|$

Non-abelian vortices in $\mathcal{N}=2$ gauge theories

Construction of vortex solutions Topology and moduli spaces

Ansatz for the solutions

 $A_i = h_a(r) t^a \varepsilon_{ij} \frac{r_j}{r^2}$ t^a generators of SO(2N) Cartan subalgebra

$$q(r,\vartheta) = \frac{1}{\sqrt{2}} \begin{pmatrix} e^{in_1^+\vartheta}\varphi_1^+(r) & e^{in_1^-\vartheta}\varphi_1^-(r) & 0 & 0 & \cdots \\ ie^{in_1^+\vartheta}\varphi_1^+(r) & -ie^{in_1^-\vartheta}\varphi_1^-(r) & 0 & 0 & \cdots \\ 0 & 0 & e^{in_2^+\vartheta}\varphi_2^+(r) & e^{in_2^-\vartheta}\varphi_2^-(r) & \cdots \\ 0 & 0 & ie^{in_2^+\vartheta}\varphi_2^+(r) & -ie^{in_2^-\vartheta}\varphi_2^-(r) & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

Finite-energy conditions: $\varphi_a^{\pm}(\infty) = \sqrt{\frac{\xi}{2N}}$ $n_a^{\pm} = n^{(0)} \mp n^{(a)}$, $n^{(0)} \equiv \frac{1}{\sqrt{2}} h_0(\infty)$; $n^{(a)} \equiv \frac{1}{\sqrt{2}} h_a(\infty)$

 $\Rightarrow N_0 = n_a^+ + n_a^-, \quad T = 2\pi\xi |N_0|$

Construction of vortex solutions Topology and moduli spaces

Moduli space of SO(N) non-abelian vortices

Vortex solutions are classified by 2N + 1 integers N_0 , n_a^{\pm} which satisfy the following conditions:

 $n_a^+ + n_a^- = N_0$, $\forall a$ $\operatorname{sign}(n_a^+) = \operatorname{sign}(n_a^-) = \operatorname{sign}(N_0)$, $\forall a$

Fundamental vortices belong to two classes of 2^{N-1} elements:

$$N_{0} = 1, \qquad \begin{pmatrix} n_{1}^{+} & n_{1}^{-} \\ n_{2}^{+} & n_{2}^{-} \\ \vdots & \vdots \\ n_{N-1}^{+} & n_{N-1}^{-} \\ n_{N}^{+} & n_{N}^{-} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 1 & 0 \\ \vdots & \vdots \\ 1 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 1 \\ 1 & 0 \\ \vdots & \vdots \\ 1 & 0 \end{pmatrix}, \dots,$$

Construction of vortex solutions Topology and moduli spaces

Moduli space of SO(N) non-abelian vortices

$$N_0 = 1, \qquad \begin{pmatrix} n_1^+ & n_1^- \\ n_2^+ & n_2^- \\ \vdots & \vdots \\ n_{N-1}^+ & n_{N-1}^- \\ n_N^+ & n_N^- \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 1 & 0 \\ \vdots & \vdots \\ 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ \vdots & \vdots \\ 1 & 0 \\ 0 & 1 \\ 1 & 0 \end{pmatrix}, \dots,$$

Vacuum invariant under $SO(2N)_{C+F}$ symmetry; the two classes above belong to two different orbits.

Each solution is invariant under a subgroup $U(N) \subset SO(2N)_{C+F}$ \Rightarrow moduli space composed by a pair of coset spaces $\mathcal{M} = SO(2N)/U(N)$

Moduli space for higher windings not known

Topology of SO(N) non-abelian vortices

The gauge group is $\frac{SO(2N) \times U(1)}{Z_2}$ which has a nontrivial homotopy group $\pi_1\left(\frac{SO(2N) \times U(1)}{-\mathbb{Z}_2}\right) = \mathbb{Z} \times \mathbb{Z}_2$

This is because of the equivalence relation $(1, -1) \simeq (-1, 1)$ \Rightarrow the minimal nontrivial element of π_1 corresponds to half winding in U(1) and half winding in SO(2N). But there are *two* inequivalent possibilities for winding in SO(2N), so there are two minimal elements.

The two classes of minimal vortices correspond to these two topologically inequivalent paths \Rightarrow no solutions interpolating between these classes.

Construction of vortex solutions Topology and moduli spaces

Non-abelian vortices in SO(N + 1)

Similar ansatz
$$q(r, \vartheta) = \begin{pmatrix} \mathsf{M}_1(r, \vartheta) & \cdots & 0 & 0 \\ \vdots & \ddots & \vdots & \vdots \\ \vdots & \cdots & \mathsf{M}_N(r, \vartheta) & 0 \\ 0 & \cdots & 0 & e^{i\hat{n}\vartheta}\hat{\varphi}(r) \end{pmatrix}$$

Finite energy gives the condition $\hat{n} = \frac{h_0(\infty)}{\sqrt{2}} = \frac{N_0}{2}$ that implies N_0 must be even ($n^{(0)}$ integer)

Consistent with topology because $\pi_1(SO(2N+1) \times U(1)) = \mathbb{Z} \times Z_2$ where the minimum loop is a complete winding around U(1)

 $SO(2N + 1)_{C+F}$ symmetry, all minimal vortices belong to the same orbit \Rightarrow moduli space SO(2N + 1)/U(N)

Framework of the correspondence Explicit examples

Non-abelian monopoles

Non-abelian monopoles are generalizations of t'Hooft-Polyakov monopoles from the breaking $SU(2) \rightarrow U(1)$ to the case of theories with gauge symmetry breaking pattern $G \longrightarrow H$ with H non-abelian.

Can be seen as t'Hooft-Polyakov monopoles of some SU(2) subgroup embedded in *G* which gets broken to $U(1) \subset H$.

Example: $SU(3) \rightarrow SU(2) \times U(1)$

$$\langle \phi
angle \sim egin{pmatrix} {m v} & 0 & 0 \ 0 & {m v} & 0 \ 0 & 0 & -2 {m v} \end{pmatrix}$$

Monopoles embedded in broken SU(2) subgroups $\mathbb{C}P^1$ moduli space with SU(2) isometry

Problems with non-abelian: non-normalizable zero-modes, topological obstructions in defining global electric charge

Monopole confinement

Consider a theory with this pattern of symmetry breaking:

$$G \xrightarrow{v_1} H \xrightarrow{v_2} 1 \qquad v_1 \gg v_2$$

- Existence of stable monopoles depend on the group $\pi_2(G/H)$, so guaranteed only in the limit $v_2 \rightarrow 0$
- Existence of stable vortices depend on the group π₁(H) and only guaranteed if v₂ ≠ 0

What is the fate of monopoles when $v_2 \neq 0$? Monopole-antimonopole pairs become confined by a vortex string (or, in the case of a single monopole, its magnetic flux becomes a vortex at distances greater than $1/v_2$).

Framework of the correspondence Explicit examples

Topological correspondence

The topological correspondence

 $\pi_2(G/H) = \pi_1(H)/\pi_1(G)$

shows that vortices and monopoles are topologically related.

- If the gauge group *G* is simply connected, there is a one-to-one relation between regular monopoles and vortices
- If the gauge group is not simply connected, then for each monopole (regular but also Dirac) there is a corresponding vortex

Framework of the correspondence Explicit examples

Flux matching

To obtain a precise correspondence between monopoles and vortices, we can match their magnetic fluxes:

Flux of the monopole at scale $1/v_1$

Flux of the vortex at scale $1/v_2$ and far from the monopole

Easy for the abelian flux, not always easy for the non-abelian flux

Framework of the correspondence Explicit examples

Monopole-vortex correspondence

Conjecture: there is a strong correspondence between minimal non-abelian monopoles and non-abelian vortices arising as approximately BPS solitons in theories with gauge symmetry breaking pattern $G \longrightarrow H \longrightarrow 1$

Example: $SU(3) \longrightarrow SU(2) \times U(1)$

Both minimal monopoles and minimal vortices are described by $\mathbb{C}P^1$ with SU(2) isometry.

Topology: $\pi_2(SU(3)/U(2)) = \pi_1(U(2)) = \mathbb{Z}$

Abelian and non-abelian magnetic fluxes match correctly.

Note that the isometries have different origin: $SU(2)_C$ transformations on monopoles, global $SU(2)_{C+F}$ transformations on vortices

Monopole-vortex correspondence

Conjecture: there is a strong correspondence between minimal non-abelian monopoles and non-abelian vortices arising as approximately BPS solitons in theories with gauge symmetry breaking pattern $G \longrightarrow H \longrightarrow 1$

Example: $SU(3) \longrightarrow SU(2) \times U(1)$

Both minimal monopoles and minimal vortices are described by $\mathbb{C}P^1$ with SU(2) isometry.

Topology: $\pi_2(SU(3)/U(2)) = \pi_1(U(2)) = \mathbb{Z}$

Abelian and non-abelian magnetic fluxes match correctly.

Note that the isometries have different origin: $SU(2)_C$ transformations on monopoles, global $SU(2)_{C+F}$ transformations on vortices

Framework of the correspondence Explicit examples

Explicit examples: $SU(N+1) \rightarrow U(N) \rightarrow 1$ $\mathcal{N} = 2$ high-energy lagrangian with gauge group SU(N+1) $\mathcal{L}_{SU(N+1)} = \frac{1}{8\pi} \operatorname{Im} S_{cl} \left[\int d^4 \theta \, \Phi^{\dagger} e^{V} \Phi + \int d^2 \theta \, \frac{1}{2} \, WW \right] + \mathcal{L}^{(q)} + \int d^2 \theta \, \mu \operatorname{Tr} \Phi^2$ $\mathcal{L}^{(q)} = \sum_{i} \left[\int d^{4} heta \left\{ Q_{i}^{\dagger} e^{V} Q_{i} + \widetilde{Q}_{i} e^{-V} \widetilde{Q}_{i}^{\dagger}
ight\} + \int d^{2} heta \left\{ \sqrt{2} \widetilde{Q}_{i} \Phi Q^{i} + m \, \widetilde{Q}_{i} \, Q^{i}
ight\}
ight]$ $\Phi = -\frac{1}{\sqrt{2}} \left(\begin{array}{cccc} m & 0 & 0 & 0 \\ 0 & \ddots & \vdots & \vdots \\ 0 & \dots & m & 0 \\ 0 & \dots & 0 & -Nm \end{array} \right)$

Low-energy lagrangian becomes U(N) theory with FI term $\xi = \mu m$ Need $\mu \ll m$ to have a hierarchy $\sqrt{\xi} \simeq v_2 \ll v_1 \simeq m$

Trivial generalization of $SU(3) \rightarrow SU(2) \times U(1)$: Both minimal monopoles and minimal vortices described by $\mathbb{C}P^{N-1}$ Topology: $\pi_2(SU(N+1)/U(N)) = \pi_1(U(N)) = \mathbb{Z}$ Magnetic fluxes match correctly.

Framework of the correspondence Explicit examples

$$\mathsf{SO}(2N) o \mathsf{U}(N) o 1$$

Symmetry breaking
$$\Phi = \begin{pmatrix} 0 & iv & 0 & 0 & \cdots \\ -iv & 0 & 0 & 0 & \cdots \\ 0 & 0 & 0 & iv & \cdots \\ 0 & 0 & -iv & 0 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

Monopoles embedded in $SO(4) \sim SU(2) \times SU(2)$ subgroups

Flux matching suggests that monopoles correspond to k = 2 vortices classified by (2, 0, 0...). Both monopoles and these vortices transform as $\mathbb{C}P^{N-1}$. Consistent with topological classification $\pi_2(SO(2N)/U(N)) = \pi_1(U(N))/\mathbb{Z}_2$

However, (2, 0, 0...) vortices are only a submanifold of k = 2 moduli space. In the U(2) case, they form $\mathbb{C}P^1 \subset W\mathbb{C}P^2_{(2,1,1)}$. What about the other vortices? Correspondence does not seem to work here...

Framework of the correspondence Explicit examples

$$SO(2N) \rightarrow U(N) \rightarrow 1$$

Symmetry breaking
$$\Phi = \begin{pmatrix} 0 & iv & 0 & 0 & \cdots \\ -iv & 0 & 0 & 0 & \cdots \\ 0 & 0 & 0 & iv & \cdots \\ 0 & 0 & -iv & 0 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

Monopoles embedded in $SO(4) \sim SU(2) \times SU(2)$ subgroups

Flux matching suggests that monopoles correspond to k = 2 vortices classified by (2, 0, 0...). Both monopoles and these vortices transform as $\mathbb{C}P^{N-1}$. Consistent with topological classification $\pi_2(SO(2N)/U(N)) = \pi_1(U(N))/\mathbb{Z}_2$

However, (2, 0, 0...) vortices are only a submanifold of k = 2 moduli space. In the U(2) case, they form $\mathbb{C}P^1 \subset W\mathbb{C}P^2_{(2,1,1)}$. What about the other vortices? Correspondence does not seem to work here...

Framework of the correspondence Explicit examples

$$SO(2N+1)
ightarrow U(N)
ightarrow 1$$

Simplest case SO(5): $\Phi = \begin{pmatrix} 0 & iv & 0 & 0 & 0 \\ -iv & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & iv & 0 \\ 0 & 0 & -iv & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$

New minimal monopoles from SO(3) embeddings, but also interpolating solutions, all degenerate in mass! (E.Weinberg)

Moduli space of these monopoles is a manifold $\mathbb{C}^2/Z_2 \bigcup \mathbb{C}P^1$

Moduli space of k = 2 vortices is $W \mathbb{C} P^2_{(2,1,1)}$ which has the same topological structure and singularities!

Flux matching only possible for some solutions, but consistent with this picture. The same for topology: $\pi_2(SO(2N+1)/U(N)) = \pi_1(U(N))/\mathbb{Z}_2$

Framework of the correspondence Explicit examples

SO(2N+2) ightarrow SO(2N) imes U(1) ightarrow 1

High-energy theory with matter in the adjoint rep

 $\Phi = \begin{pmatrix} 0 & iv & 0 & 0 & \cdots \\ -iv & 0 & 0 & 0 & \cdots \\ 0 & 0 & 0 & 0 & \cdots \\ 0 & 0 & 0 & 0 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}$

Monopoles embedded in SO(3) subgroups

Low-energy theory contains massless matter multiplets in the *fundamental* representation

As before, flux matching suggests that monopoles correspond to $N_0 = 2$ vortices

$$\left(\begin{array}{rrrr} 0 & 1 & 1 & \dots & 1 \\ 2 & 1 & 1 & \dots & 1 \end{array}\right)$$

Luca Ferretti Non-abelian vortices in $\mathcal{N} = 2$ gauge theories

Framework of the correspondence Explicit examples

SO(2N+2)
ightarrow SO(2N) imes U(1)
ightarrow 1

Consistent with topology, because

$$\pi_2(\frac{SO(2N+2)/}{U(1) \times SO(2N)/Z_2}) = \frac{\pi_1(U(1) \times SO(2N)/Z_2)}{Z_2}$$

Both vortices and monopoles seem to form a complex quadric surface $SO(2N)/U(1) \times SO(2N-2)$ with SO(2N) isometry But impossible to compare because of lack of knowledge about true moduli space for vortices of higher winding

The same problem for $SO(2N+3) \rightarrow SO(2N+1) \times U(1) \rightarrow 1$

Conclusions

Monopole confinement:

- Monopole-vortex correspondence seems good
- More checks in SO and USp
- Which confinement? non-BPS corrections...
- Explicit metric on moduli space?

• Vortices in SO(N):

- Explicit solutions available
- Moduli space for $N_0 > 1$?
- Semilocal vortices, vortex junctions...

(In general, interesting applications of non-abelian vortices in $\mathcal{N} = 1$ SUSY or less . . .)