# Generalized Chern-Simons terms in $\mathcal{N}=1$ supergravity 

Jan Rosseel (ITF, K. U. Leuven)

Based on: J. De Rydt, T. Schmidt, A. Van Proeyen, M. Zagermann, J.R., arXiv:0705.4216
Manchester, HEP 2007, 20/07/2007

## Outline

1. Introduction
2. Symplectic transformations in $\mathcal{N}=1$ supergravity
3. The kinetic terms of the vector multiplets
4. Generalized Chern-Simons terms
5. Anomalies
6. Cancellation
7. Supergravity and extended supersymmetry
8. Conclusions

## Introduction

- Generalized Chern-Simons terms are terms of the form

$$
C_{A B, C}^{(\mathrm{CS})} W^{C} \wedge W^{A} \wedge F^{B} .
$$

- They can appear in certain flux compactifications and Scherk-Schwarz compactifications, where they are associated with the gauging of certain axionic shift symmetries (Andrianopoli, d’Auria, Ferrara, Lledo, de Wit, Samtleben, Trigiante).
- Recently their importance has been stressed in anomaly cancellation in orientifold models with intersecting D-branes (Anastasopoulos, Bianchi, Dudas, Kiritsis).
- In extended supersymmetry and supergravity, their presence is well-known (de Wit, Lauwers, Van Proeyen).
- Goal of this talk : Clarify the role of generalized Chern-Simons terms and anomalies in obtaining gauge-invariant and supersymmetric $\mathcal{N}=1$ actions.


## Introduction

- Generalized Chern-Simons terms are terms of the form

$$
C_{A B, C}^{(\mathrm{CS})} W^{C} \wedge W^{A} \wedge F^{B} .
$$

- They can appear in certain flux compactifications and Scherk-Schwarz compactifications, where they are associated with the gauging of certain axionic shift symmetries (Andrianopoli, d'Auria, Ferrara, Lledo, de Wit, Samtleben, Trigiante).
- Recently their importance has been stressed in anomaly cancellation in orientifold models with intersecting D-branes (Anastasopoulos, Bianchi, Dudas, Kiritsis).
- In extended supersymmetry and supergravity, their presence is well-known (de Wit, Lauwers, Van Proeyen).
- Goal of this talk: Clarify the role of generalized Chern-Simons terms and anomalies in obtaining gauge-invariant and supersymmetric $\mathcal{N}=1$ actions.


## Introduction

- Generalized Chern-Simons terms are terms of the form

$$
C_{A B, C}^{(\mathrm{CS})} W^{C} \wedge W^{A} \wedge F^{B} .
$$

- They can appear in certain flux compactifications and Scherk-Schwarz compactifications, where they are associated with the gauging of certain axionic shift symmetries (Andrianopoli, d'Auria, Ferrara, Lledo, de Wit, Samtleben, Trigiante).
- Recently their importance has been stressed in anomaly cancellation in orientifold models with intersecting D-branes (Anastasopoulos, Bianchi, Dudas, Kiritsis).
- In extended supersymmetry and supergravity, their presence is well-known (de Wit, Lauwers, Van Proeyen).
- Goal of this talk : Clarify the role of generalized Chern-Simons terms and anomalies in obtaining gauge-invariant and supersymmetric $\mathcal{N}=1$ actions.


## Introduction

- Generalized Chern-Simons terms are terms of the form

$$
C_{A B, C}^{(\mathrm{CS})} W^{C} \wedge W^{A} \wedge F^{B} .
$$

- They can appear in certain flux compactifications and Scherk-Schwarz compactifications, where they are associated with the gauging of certain axionic shift symmetries (Andrianopoli, d'Auria, Ferrara, Lledo, de Wit, Samtleben, Trigiante).
- Recently their importance has been stressed in anomaly cancellation in orientifold models with intersecting D-branes (Anastasopoulos, Bianchi, Dudas, Kiritsis).
- In extended supersymmetry and supergravity, their presence is well-known (de Wit, Lauwers, Van Proeyen).
- Goal of this talk : Clarify the role of generalized Chern-Simons terms and anomalies in obtaining gauge-invariant and supersymmetric $\mathcal{N}=1$ actions.


## Introduction

- Generalized Chern-Simons terms are terms of the form

$$
C_{A B, C}^{(\mathrm{CS})} W^{C} \wedge W^{A} \wedge F^{B} .
$$

- They can appear in certain flux compactifications and Scherk-Schwarz compactifications, where they are associated with the gauging of certain axionic shift symmetries (Andrianopoli, d'Auria, Ferrara, Lledo, de Wit, Samtleben, Trigiante).
- Recently their importance has been stressed in anomaly cancellation in orientifold models with intersecting D-branes (Anastasopoulos, Bianchi, Dudas, Kiritsis).
- In extended supersymmetry and supergravity, their presence is well-known (de Wit, Lauwers, Van Proeyen).
- Goal of this talk : Clarify the role of generalized Chern-Simons terms and anomalies in obtaining gauge-invariant and supersymmetric $\mathcal{N}=1$ actions.


## Symplectic transformations in $\mathcal{N}=1$ supergravity

- Consider $\mathcal{N}=1$ supergravity coupled to chiral multiplets and vector multiplets.
- The kinetic terms for the vector fields read:

$$
e^{-1} \mathcal{L}_{1}=-\frac{1}{4} \operatorname{Re} f_{A B} F_{\mu \nu}^{A} F^{\mu \nu B}+\frac{1}{4} \mathrm{i} \operatorname{Im} f_{A B} F_{\mu \nu}^{A} \tilde{F}^{\mu \nu B}
$$

The gauge kinetic function $f_{A B}(z)$ depends holomorphically on the scalar fields $z^{i}$.

- Gauge transformation under which $z^{i}$ transform non-trivially can induce a gauge transformation of $f_{A B}(z)$.
- E.g. : gauge kinetic function transforms as a symmetric two-tensor in the adjoint representation.

$$
\delta(\Lambda) f_{A B}=\Lambda^{C} \delta_{C} f_{A B}, \quad \delta_{C} f_{A B}=f_{C A}^{D} f_{B D}+f_{C B}{ }^{D} f_{A D},
$$

where $\Lambda^{A}(x)$ are the parameters of the gauge transformations and $f_{A B}{ }^{C}$ are the structure constants.
$\Rightarrow$ kinetic terms of the vectors are obviously gauge invariant.

## Symplectic transformations in $\mathcal{N}=1$ supergravity

- Consider $\mathcal{N}=1$ supergravity coupled to chiral multiplets and vector multiplets.
- The kinetic terms for the vector fields read:

$$
e^{-1} \mathcal{L}_{1}=-\frac{1}{4} \operatorname{Re} f_{A B} F_{\mu \nu}^{A} F^{\mu \nu B}+\frac{1}{4} \mathrm{i} \operatorname{Im} f_{A B} F_{\mu \nu}^{A} \tilde{F}^{\mu \nu B}
$$

The gauge kinetic function $f_{A B}(z)$ depends holomorphically on the scalar fields $z^{i}$.

- Gauge transformation under which $z^{l}$ transform non-trivially can induce a gauge transformation of $f_{A B}(z)$.
- E.g. : gauge kinetic function transforms as a symmetric two-tensor in the adjoint representation.
where $\Lambda^{A}(x)$ are the parameters of the gauge transformations and $f_{A B}{ }^{C}$ are the structure constants.
$\Rightarrow$ kinetic terms of the vectors are obviously gauge invariant.


## Symplectic transformations in $\mathcal{N}=1$ supergravity

- Consider $\mathcal{N}=1$ supergravity coupled to chiral multiplets and vector multiplets.
- The kinetic terms for the vector fields read:

$$
e^{-1} \mathcal{L}_{1}=-\frac{1}{4} \operatorname{Re} f_{A B} F_{\mu \nu}^{A} F^{\mu \nu B}+\frac{1}{4} \mathrm{i} \operatorname{Im} f_{A B} F_{\mu \nu}^{A} \tilde{F}^{\mu \nu B}
$$

The gauge kinetic function $f_{A B}(z)$ depends holomorphically on the scalar fields $z^{i}$.

- Gauge transformation under which $z^{i}$ transform non-trivially can induce a gauge transformation of $f_{A B}(z)$.
adjoint representation.

where $\Lambda^{A}(x)$ are the parameters of the gauge transformations and $f_{A B}^{C}$ are the structure constants.
$\Rightarrow$ kinetic terms of the vectors are obviously gauge invariant.


## Symplectic transformations in $\mathcal{N}=1$ supergravity

- Consider $\mathcal{N}=1$ supergravity coupled to chiral multiplets and vector multiplets.
- The kinetic terms for the vector fields read:

$$
e^{-1} \mathcal{L}_{1}=-\frac{1}{4} \operatorname{Re} f_{A B} F_{\mu \nu}^{A} F^{\mu \nu B}+\frac{1}{4} \mathrm{i} \operatorname{Im} f_{A B} F_{\mu \nu}^{A} \tilde{F}^{\mu \nu B}
$$

The gauge kinetic function $f_{A B}(z)$ depends holomorphically on the scalar fields $z^{i}$.

- Gauge transformation under which $z^{i}$ transform non-trivially can induce a gauge transformation of $f_{A B}(z)$.
- E.g. : gauge kinetic function transforms as a symmetric two-tensor in the adjoint representation.

$$
\delta(\Lambda) f_{A B}=\Lambda^{C} \delta_{C} f_{A B}, \quad \delta_{C} f_{A B}=f_{C A}^{D} f_{B D}+f_{C B}^{D} f_{A D}
$$

where $\Lambda^{A}(x)$ are the parameters of the gauge transformations and $f_{A B}{ }^{C}$ are the structure constants.
$\Rightarrow$ kinetic terms of the vectors are obviously gauge invariant.

## Symplectic transformations in $\mathcal{N}=1$ supergravity

- In fact : a more general transformation law for the gauge kinetic function is allowed, as is suggested by the symplectic formulation of $\mathcal{N}=1$ supergravity.
$>$ Rewrite the kinetic terms of the vectors as:


The combined set of field equations and Bianchi identities

is then invariant under the symplectic transformations


## Symplectic transformations in $\mathcal{N}=1$ supergravity

- In fact : a more general transformation law for the gauge kinetic function is allowed, as is suggested by the symplectic formulation of $\mathcal{N}=1$ supergravity.
- Rewrite the kinetic terms of the vectors as:

$$
e^{-1} \mathcal{L}_{1}=-\frac{1}{2} \operatorname{Im}\left(F_{\mu \nu}^{-A} G_{A}^{\mu \nu-}\right), \quad G_{A}^{\mu \nu-}=-2 \mathrm{i} \frac{\partial e^{-1} \mathcal{L}_{1}}{\partial F_{\mu \nu}^{-A}}=\mathrm{i} f_{A B} F^{\mu \nu-B} .
$$

The combined set of field equations and Bianchi identities

$$
\begin{aligned}
\partial^{\mu} \operatorname{Im} F_{\mu \nu}^{A-} & =0 \quad \text { Bianchi identities }, \\
\partial_{\mu} \operatorname{Im} G_{A}^{\mu \nu-} & =0 \quad \text { Equations of motion. }
\end{aligned}
$$

is then invariant under the symplectic transformations

$$
\binom{F^{\prime-}}{G^{\prime-}}=\mathcal{S}\binom{F^{-}}{G^{-}}=\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)\binom{F^{-}}{G^{-}}, \quad\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right) \in \operatorname{Sp}(2 n, \mathbb{R}) .
$$

## Symplectic transformations in $\mathcal{N}=1$ supergravity

- Under these symplectic transformations, the gauge kinetic function transforms as:

$$
\mathrm{i} f^{\prime}=(C+D \mathrm{i} f)(A+B \mathrm{i} f)^{-1}
$$

- Symmetries of the action then correspond to transformations with $B=0$. If $C \neq 0$ :

For rigid symmetries, the last term represents a total derivative.

- In order to promote rigid symmetries to gauge symmetries, the $F_{\ldots,}^{A}$ have to transform in adjoint representation of the gauge group. For these transformations, the symplectic matrix reads



## Symplectic transformations in $\mathcal{N}=1$ supergravity

- Under these symplectic transformations, the gauge kinetic function transforms as:

$$
\mathrm{i} f^{\prime}=(C+D \mathrm{i} f)(A+B \mathrm{i} f)^{-1}
$$

- Symmetries of the action then correspond to transformations with $B=0$. If $C \neq 0$ :

$$
\begin{align*}
e^{-1} \mathcal{L}_{1}^{\prime} & =-\frac{1}{2} \operatorname{Im}\left(F_{\mu \nu}^{\prime-A} G_{A}^{\prime \mu \nu-}\right) \\
& =-\frac{1}{2} \operatorname{Im}\left(F_{\mu \nu}^{-A} G_{A}^{\mu \nu-}+F_{\mu \nu}^{-A}\left(C^{T} A\right)_{A B} F^{B \mu \nu-}\right) \tag{2.1}
\end{align*}
$$

For rigid symmetries, the last term represents a total derivative.

- In order to promote rigid symmetries to gauge symmetries, the $F_{\mu \nu}^{A}$ have to transform in adjoint representation of the gauge group. For these transformations, the symplectic matrix reads


## Symplectic transformations in $\mathcal{N}=1$ supergravity

- Under these symplectic transformations, the gauge kinetic function transforms as:

$$
\mathrm{i} f^{\prime}=(C+D \mathrm{i} f)(A+B \mathrm{i} f)^{-1}
$$

- Symmetries of the action then correspond to transformations with $B=0$. If $C \neq 0$ :

$$
\begin{align*}
e^{-1} \mathcal{L}_{1}^{\prime} & =-\frac{1}{2} \operatorname{Im}\left(F_{\mu \nu}^{\prime-A} G_{A}^{\prime \mu \nu-}\right) \\
& =-\frac{1}{2} \operatorname{Im}\left(F_{\mu \nu}^{-A} G_{A}^{\mu \nu-}+F_{\mu \nu}^{-A}\left(C^{T} A\right)_{A B} F^{B \mu \nu-}\right) \tag{2.1}
\end{align*}
$$

For rigid symmetries, the last term represents a total derivative.

- In order to promote rigid symmetries to gauge symmetries, the $F_{\mu \nu}^{A}$ have to transform in adjoint representation of the gauge group. For these transformations, the symplectic matrix reads

$$
\mathcal{S}=\mathbb{1}-\Lambda^{C} \mathcal{S}_{C}, \quad \mathcal{S}_{C}=\left(\begin{array}{cc}
f_{C B}{ }^{A} & 0 \\
C_{A B, C} & -f_{C A}^{B}
\end{array}\right),
$$

## Symplectic transformations in $\mathcal{N}=1$ supergravity

- This reasoning suggests that we can allow for a more general transformation rule for the gauge kinetic function:

$$
\delta_{C} f_{A B}=f_{C A}{ }^{D} f_{B D}+f_{C B}{ }^{D} f_{A D}
$$

- Example:

$$
f_{A B}=h_{A B i} i, \quad \delta z^{i}=\mathrm{i} M_{C}^{i} \Lambda^{C} \Rightarrow C_{A B, C}=h_{A B i} M_{C}^{i}
$$

- Note that the kinetic terms of the vectors are no longer gauge invariant:


For rigid symmetries : total derivative. For gauge symmetries : no longer gauge invariant.

- $C_{A B, C}$ is symmetric in its first two indices.



## Symplectic transformations in $\mathcal{N}=1$ supergravity

- This reasoning suggests that we can allow for a more general transformation rule for the gauge kinetic function:

$$
\delta_{C} f_{A B}=f_{C A}^{D} f_{B D}+f_{C B}^{D} f_{A D}+\mathrm{i} C_{A B, C}
$$

- Example:

$$
f_{A B}=h_{A B i z^{i}}, \quad \delta z^{i}=\mathrm{i} M_{C}^{i} \Lambda^{C} \Rightarrow C_{A B, C}=h_{A B i} M_{C}^{i}
$$

- Note that the kinetic terms of the vectors are no longer gauge invariant:


For rigid symmetries : total derivative. For gauge symmetries : no longer gauge invariant.

- $C_{A B, C}$ is symmetric in its first two indices.



## Symplectic transformations in $\mathcal{N}=1$ supergravity

- This reasoning suggests that we can allow for a more general transformation rule for the gauge kinetic function:

$$
\delta_{C} f_{A B}=f_{C A}^{D} f_{B D}+f_{C B}^{D} f_{A D}+\mathrm{i} C_{A B, C}
$$

- Example:

$$
f_{A B}=h_{A B i} z^{i}, \quad \delta z^{i}=\mathrm{i} M_{C}^{i} \Lambda^{C} \Rightarrow C_{A B, C}=h_{A B i} M_{C}^{i},
$$

- Note that the kinetic terms of the vectors are no longer gauge invariant:


For rigid symmetries : total derivative. For gauge symmetries : no longer gauge invariant.

- $C_{A B, C}$ is symmetric in its first two indices.



## Symplectic transformations in $\mathcal{N}=1$ supergravity

- This reasoning suggests that we can allow for a more general transformation rule for the gauge kinetic function:

$$
\delta_{C} f_{A B}=f_{C A}^{D} f_{B D}+f_{C B}^{D} f_{A D}+\mathrm{i} C_{A B, C}
$$

- Example:

$$
f_{A B}=h_{A B i} z^{i}, \quad \delta z^{i}=\mathrm{i} M_{C}^{i} \Lambda^{C} \Rightarrow C_{A B, C}=h_{A B i} M_{C}^{i},
$$

- Note that the kinetic terms of the vectors are no longer gauge invariant:

$$
\delta_{\text {gauge }} e^{-1} \mathcal{L}_{1}=\frac{1}{4} \mathrm{i} C_{A B, C} \Lambda^{C} \mathcal{F}_{\mu \nu}^{A} \tilde{\mathcal{F}}^{\mu \nu B}
$$

For rigid symmetries : total derivative. For gauge symmetries : no longer gauge invariant.


## Symplectic transformations in $\mathcal{N}=1$ supergravity

- This reasoning suggests that we can allow for a more general transformation rule for the gauge kinetic function:

$$
\delta_{C} f_{A B}=f_{C A}^{D} f_{B D}+f_{C B}^{D} f_{A D}+\mathrm{i} C_{A B, C}
$$

- Example:

$$
f_{A B}=h_{A B i} z^{i}, \quad \delta z^{i}=\mathrm{i} M_{C}^{i} \Lambda^{C} \Rightarrow C_{A B, C}=h_{A B i} M_{C}^{i}
$$

- Note that the kinetic terms of the vectors are no longer gauge invariant:

$$
\delta_{\text {gauge }} e^{-1} \mathcal{L}_{1}=\frac{1}{4} \mathrm{i} C_{A B, C} \Lambda^{C} \mathcal{F}_{\mu \nu}^{A} \tilde{\mathcal{F}}^{\mu \nu B}
$$

For rigid symmetries : total derivative. For gauge symmetries : no longer gauge invariant.

- $C_{A B, C}$ is symmetric in its first two indices.


## The kinetic terms of the vector multiplet

- Consider the full kinetic terms of the vector multiplet in $\mathcal{N}=1$ rigid supersymmetry:

$$
\begin{aligned}
& S_{f}= \int \mathrm{d}^{4} x \mathrm{~d}^{2} \theta f_{A B}(X) W_{\alpha}^{A} W_{\beta}^{B} \varepsilon^{\alpha \beta}+c . c . \\
&=\int \mathrm{d}^{4} x[ -\frac{1}{4} \operatorname{Re} f_{A B} \mathcal{F}_{\mu \nu}^{A} \mathcal{F}^{\mu \nu B}-\frac{1}{2} \operatorname{Re} f_{A B} \bar{\lambda}^{A} \mathcal{D} \lambda^{B} \\
&\left.+\frac{1}{4} \mathrm{i} \operatorname{Im} f_{A B} \mathcal{F}_{\mu \nu}^{A} \tilde{\mathcal{F}}^{\mu \nu B}+\frac{1}{4} \mathrm{i}\left(\mathcal{D}_{\mu} \operatorname{Im} f_{A B}\right) \bar{\lambda}^{A} \gamma^{5} \gamma^{\mu} \lambda^{B}\right], \\
& \mathcal{D}_{\mu} f_{A B}=\partial_{\mu} f_{A B}-2 W_{\mu}^{C} f_{C(A}{ }^{D} f_{B) D} .
\end{aligned}
$$

- To covariantize with respect to the more general transformation rule of $f_{A B}$


## The kinetic terms of the vector multiplet

- Consider the full kinetic terms of the vector multiplet in $\mathcal{N}=1$ rigid supersymmetry:

$$
\begin{aligned}
& S_{f}= \int \mathrm{d}^{4} x \mathrm{~d}^{2} \theta f_{A B}(X) W_{\alpha}^{A} W_{\beta}^{B} \varepsilon^{\alpha \beta}+c . c . \\
&=\int \mathrm{d}^{4} x[ -\frac{1}{4} \operatorname{Re} f_{A B} \mathcal{F}_{\mu \nu}^{A} \mathcal{F}^{\mu \nu B}-\frac{1}{2} \operatorname{Re} f_{A B} \bar{\lambda}^{A} D \mathcal{D} \lambda^{B} \\
&\left.+\frac{1}{4} \mathrm{i} \operatorname{Im} f_{A B} \mathcal{F}_{\mu \nu}^{A} \tilde{\mathcal{F}}^{\mu \nu B}+\frac{1}{4} \mathrm{i}\left(\mathcal{D}_{\mu} \operatorname{Im} f_{A B}\right) \bar{\lambda}^{A} \gamma^{5} \gamma^{\mu} \lambda^{B}\right], \\
& \mathcal{D}_{\mu} f_{A B}=\partial_{\mu} f_{A B}-2 W_{\mu}^{C} f_{C(A}{ }^{D} f_{B) D} .
\end{aligned}
$$

- To covariantize with respect to the more general transformation rule of $f_{A B}$

$$
\hat{\mathcal{D}}_{\mu} f_{A B}=\partial_{\mu} f_{A B}-2 W_{\mu}^{C} f_{C(A}{ }^{D} f_{B) D}
$$

## The kinetic terms of the vector multiplet

- Consider the full kinetic terms of the vector multiplet in $\mathcal{N}=1$ rigid supersymmetry:

$$
\begin{aligned}
& S_{f}= \int \mathrm{d}^{4} x \mathrm{~d}^{2} \theta f_{A B}(X) W_{\alpha}^{A} W_{\beta}^{B} \varepsilon^{\alpha \beta}+c . c . \\
&=\int \mathrm{d}^{4} x[ -\frac{1}{4} \operatorname{Re} f_{A B} \mathcal{F}_{\mu \nu}^{A} \mathcal{F}^{\mu \nu B}-\frac{1}{2} \operatorname{Re} f_{A B} \bar{\lambda}^{A} D \mathcal{D} \lambda^{B} \\
&\left.+\frac{1}{4} \mathrm{i} \operatorname{Im} f_{A B} \mathcal{F}_{\mu \nu}^{A} \tilde{\mathcal{F}}^{\mu \nu B}+\frac{1}{4} \mathrm{i}\left(\mathcal{D}_{\mu} \operatorname{Im} f_{A B}\right) \bar{\lambda}^{A} \gamma^{5} \gamma^{\mu} \lambda^{B}\right], \\
& \mathcal{D}_{\mu} f_{A B}=\partial_{\mu} f_{A B}-2 W_{\mu}^{C} f_{C(A}{ }^{D} f_{B) D} .
\end{aligned}
$$

- To covariantize with respect to the more general transformation rule of $f_{A B}$

$$
\hat{\mathcal{D}}_{\mu} f_{A B}=\partial_{\mu} f_{A B}-2 W_{\mu}^{C} f_{C(A}{ }^{D} f_{B) D}-\mathrm{i} W_{\mu}^{C} C_{A B, C} .
$$

## The kinetic terms of the vector multiplet

- Consider the full kinetic terms of the vector multiplet in $\mathcal{N}=1$ rigid supersymmetry:

$$
\begin{aligned}
& S_{f}= \int \mathrm{d}^{4} x \mathrm{~d}^{2} \theta f_{A B}(X) W_{\alpha}^{A} W_{\beta}^{B} \varepsilon^{\alpha \beta}+c . c . \\
&=\int \mathrm{d}^{4} x[ -\frac{1}{4} \operatorname{Re} f_{A B} \mathcal{F}_{\mu \nu}^{A} \mathcal{F}^{\mu \nu B}-\frac{1}{2} \operatorname{Re} f_{A B} \bar{\lambda}^{A} D \mathcal{D} \lambda^{B} \\
&\left.+\frac{1}{4} \mathrm{i} \operatorname{Im} f_{A B} \mathcal{F}_{\mu \nu}^{A} \tilde{\mathcal{F}}^{\mu \nu B}+\frac{1}{4} \mathrm{i}\left(\mathcal{D}_{\mu} \operatorname{Im} f_{A B}\right) \bar{\lambda}^{A} \gamma^{5} \gamma^{\mu} \lambda^{B}\right], \\
& \mathcal{D}_{\mu} f_{A B}=\partial_{\mu} f_{A B}-2 W_{\mu}^{C} f_{C(A}{ }^{D} f_{B) D} .
\end{aligned}
$$

- To covariantize with respect to the more general transformation rule of $f_{A B}$

$$
\hat{\mathcal{D}}_{\mu} f_{A B}=\partial_{\mu} f_{A B}-2 W_{\mu}^{C} f_{C(A}{ }^{D} f_{B) D}-\mathrm{i} W_{\mu}^{C} C_{A B, C} .
$$

From now on we will consider the action $\hat{S}_{f}$, where $\mathcal{D}_{\mu} \rightarrow \hat{\mathcal{D}}_{\mu}$.

## The kinetic terms of the vector multiplet

- In this way, the gauge non-invariance only originates from one term:

$$
\delta_{\text {gauge }} e^{-1} \mathcal{L}_{1}=\frac{1}{4} \mathrm{i} C_{A B, C} \Lambda^{C} \mathcal{F}_{\mu \nu}^{A} \tilde{\mathcal{F}}^{\mu \nu B}
$$

$\rightarrow$ Note the relation between gauge non-invariance and supersymmetry non-invariance:

$$
\begin{equation*}
\left\{Q_{\alpha}, Q_{\dot{\alpha}}^{\dagger}\right\}=\sigma_{\alpha \dot{\alpha}}^{\mu} \mathcal{D}_{\mu}=\sigma_{\alpha \dot{\alpha}}^{\mu}\left(\partial_{\mu}-W_{\mu}^{A} \delta_{A}\right) \tag{3.1}
\end{equation*}
$$

- Indeed, the action is not invariant under supersymmetry either:


Note that this expression only depends on the fields of the vector multiplets.

- In the following we will attempt to construct an action that is invariant under gauge and supersymmetry, by means of generalized Chern-Simons terms and anomalies.


## The kinetic terms of the vector multiplet

- In this way, the gauge non-invariance only originates from one term:

$$
\delta_{\text {gauge }} e^{-1} \mathcal{L}_{1}=\frac{1}{4} \mathrm{i} C_{A B, C} \Lambda^{C} \mathcal{F}_{\mu \nu}^{A} \tilde{\mathcal{F}}^{\mu \nu B}
$$

- Note the relation between gauge non-invariance and supersymmetry non-invariance:

$$
\begin{equation*}
\left\{Q_{\alpha}, Q_{\dot{\alpha}}^{\dagger}\right\}=\sigma_{\alpha \dot{\alpha}}^{\mu} \mathcal{D}_{\mu}=\sigma_{\alpha \dot{\alpha}}^{\mu}\left(\partial_{\mu}-W_{\mu}^{A} \delta_{A}\right) \tag{3.1}
\end{equation*}
$$

$>$ Indeed, the action is not invariant under supersymmetry either: $\delta(\epsilon) \hat{S}_{f}=\int \mathrm{d}^{4} x \operatorname{Re}\left(\frac{1}{2} C_{A B, C} \varepsilon^{\mu \nu \rho \sigma} W_{\mu}^{C} \mathcal{F}_{\nu \rho}^{A} \bar{\epsilon}_{R} \gamma_{\sigma} \lambda_{L}^{B}-\frac{3}{2} \mathrm{i} C_{(A B, C)} \bar{\epsilon}_{R} \lambda_{R}^{C} \bar{\lambda}_{L}^{A} \lambda_{L}^{B}\right)$ Note that this expression only depends on the fields of the vector multiplets.

- In the following we will attempt to construct an action that is invariant under gauge and supersymmetry, by means of generalized Chern-Simons terms and anomalies.


## The kinetic terms of the vector multiplet

- In this way, the gauge non-invariance only originates from one term:

$$
\delta_{\text {gauge }} e^{-1} \mathcal{L}_{1}=\frac{1}{4} \mathrm{i} C_{A B, C} \Lambda^{C} \mathcal{F}_{\mu \nu}^{A} \tilde{\mathcal{F}}^{\mu \nu B}
$$

- Note the relation between gauge non-invariance and supersymmetry non-invariance:

$$
\begin{equation*}
\left\{Q_{\alpha}, Q_{\dot{\alpha}}^{\dagger}\right\}=\sigma_{\alpha \dot{\alpha}}^{\mu} \mathcal{D}_{\mu}=\sigma_{\alpha \dot{\alpha}}^{\mu}\left(\partial_{\mu}-W_{\mu}^{A} \delta_{A}\right) \tag{3.1}
\end{equation*}
$$

- Indeed, the action is not invariant under supersymmetry either:

$$
\delta(\epsilon) \hat{S}_{f}=\int \mathrm{d}^{4} x \operatorname{Re}\left(\frac{1}{2} C_{A B, C} \varepsilon^{\mu \nu \rho \sigma} W_{\mu}^{C} \mathcal{F}_{\nu \rho}^{A} \bar{\epsilon}_{R} \gamma_{\sigma} \lambda_{L}^{B}-\frac{3}{2} \mathrm{i} C_{(A B, C)} \bar{\epsilon}_{R} \lambda_{R}^{C} \bar{\lambda}_{L}^{A} \lambda_{L}^{B}\right) .
$$

Note that this expression only depends on the fields of the vector multiplets.
under gauge and supersymmetry, by means of generalized Chern-Simons terms and anomalies.

## The kinetic terms of the vector multiplet

- In this way, the gauge non-invariance only originates from one term:

$$
\delta_{\text {gauge }} e^{-1} \mathcal{L}_{1}=\frac{1}{4} \mathrm{i} C_{A B, C} \Lambda^{C} \mathcal{F}_{\mu \nu}^{A} \tilde{\mathcal{F}}^{\mu \nu B}
$$

- Note the relation between gauge non-invariance and supersymmetry non-invariance:

$$
\begin{equation*}
\left\{Q_{\alpha}, Q_{\dot{\alpha}}^{\dagger}\right\}=\sigma_{\alpha \dot{\alpha}}^{\mu} \mathcal{D}_{\mu}=\sigma_{\alpha \dot{\alpha}}^{\mu}\left(\partial_{\mu}-W_{\mu}^{A} \delta_{A}\right) \tag{3.1}
\end{equation*}
$$

- Indeed, the action is not invariant under supersymmetry either:

$$
\delta(\epsilon) \hat{S}_{f}=\int \mathrm{d}^{4} x \operatorname{Re}\left(\frac{1}{2} C_{A B, C} \varepsilon^{\mu \nu \rho \sigma} W_{\mu}^{C} \mathcal{F}_{\nu \rho}^{A} \bar{\epsilon}_{R} \gamma_{\sigma} \lambda_{L}^{B}-\frac{3}{2} \mathrm{i} C_{(A B, C)} \bar{\epsilon}_{R} \lambda_{R}^{C} \bar{\lambda}_{L}^{A} \lambda_{L}^{B}\right) .
$$

Note that this expression only depends on the fields of the vector multiplets.

- In the following we will attempt to construct an action that is invariant under gauge and supersymmetry, by means of generalized Chern-Simons terms and anomalies.


## Generalized Chern-Simons terms

- Generalized Chern-Simons terms are (for the general non-abelian case)

$$
S_{\mathrm{CS}}=\int \mathrm{d}^{4} x \frac{1}{2} C_{A B, C}^{(\mathrm{CS})} \varepsilon^{\mu \nu \rho \sigma}\left(\frac{1}{3} W_{\mu}^{C} W_{\nu}^{A} F_{\rho \sigma}^{B}+\frac{1}{4} f_{D E}^{A} W_{\mu}^{D} W_{\nu}^{E} W_{\rho}^{C} W_{\sigma}^{B}\right) .
$$

Proportional to a three-index tensor $C_{A B, C}^{(\mathrm{CS})}$, not necessarily equal to $C_{A B, C}$.

- We can put $=0$,

They thus correspond to $\square$.

- For semi-simple algebras, GCS terms do not bring anything new (de Wit. Hull, Rocek). In that case, one can find a constant, real, symmetric matrix $Z_{A B}$, such that:

$$
C_{A B, C}^{(\mathrm{CS})}=2 f_{C(A}{ }^{D} Z_{B) D},
$$

In this case, the GCS action can be reabsorbed in the original action $S_{f}$ by redefining $f_{A B}$ :

$$
\int_{A B}^{\prime}=\int_{A B}+\mathrm{i} Z_{A B} .
$$

## Generalized Chern-Simons terms

- Generalized Chern-Simons terms are (for the general non-abelian case)

$$
S_{\mathrm{CS}}=\int \mathrm{d}^{4} x \frac{1}{2} C_{A B, C}^{(\mathrm{CS})} \varepsilon^{\mu \nu \rho \sigma}\left(\frac{1}{3} W_{\mu}^{C} W_{\nu}^{A} F_{\rho \sigma}^{B}+\frac{1}{4} f_{D E}^{A} W_{\mu}^{D} W_{\nu}^{E} W_{\rho}^{C} W_{\sigma}^{B}\right) .
$$

Proportional to a three-index tensor $C_{A B, C}^{(C S)}$, not necessarily equal to $C_{A B, C}$.

- We can put

$$
C_{(A B, C)}^{(\mathrm{CS})}=0
$$

They thus correspond to $\square$.

- For semi-simple algebras, GCS terms do not bring anything new (de Wit, Hull, Rocek). In that case, one can find a constant, real, symmetric matrix $Z_{A B}$, such that:

$$
C_{A B, C}^{(\mathrm{CS})}=2 f_{C(A}{ }^{D} Z_{B) D}
$$

In this case, the GCS action can be reabsorbed in the original action $S_{f}$ by redefining $f_{A B}$ :

$$
f_{A B}^{\prime}=f_{A B}+\mathrm{i} Z_{A B} .
$$

## Generalized Chern-Simons terms

- Generalized Chern-Simons terms are (for the general non-abelian case)

$$
S_{\mathrm{CS}}=\int \mathrm{d}^{4} x \frac{1}{2} C_{A B, C}^{(\mathrm{CS})} \varepsilon^{\mu \nu \rho \sigma}\left(\frac{1}{3} W_{\mu}^{C} W_{\nu}^{A} F_{\rho \sigma}^{B}+\frac{1}{4} f_{D E}^{A} W_{\mu}^{D} W_{\nu}^{E} W_{\rho}^{C} W_{\sigma}^{B}\right) .
$$

Proportional to a three-index tensor $C_{A B, C}^{(\mathrm{CS})}$, not necessarily equal to $C_{A B, C}$.

- We can put

$$
C_{(A B, C)}^{(\mathrm{CS})}=0
$$

They thus correspond to $\square$.

- For semi-simple algebras, GCS terms do not bring anything new (de Wit, Hull, Rocek). In that case, one can find a constant, real, symmetric matrix $Z_{A B}$, such that:

$$
C_{A B, C}^{(\mathrm{CS})}=2 f_{C(A}{ }^{D} Z_{B) D},
$$

In this case, the GCS action can be reabsorbed in the original action $S_{f}$ by redefining $f_{A B}$ :

$$
f_{A B}^{\prime}=f_{A B}+\mathrm{i} Z_{A B}
$$

## Anomalies

- Anomalies indicate a non-invariance of the effective action $\Gamma\left[W_{\mu}\right]$ :

$$
\begin{gathered}
\mathrm{e}^{-\Gamma\left[W_{\mu}\right]}=\int \mathcal{D} \bar{\phi} \mathcal{D} \phi \mathrm{e}^{-\mathcal{S}\left(W_{\mu}, \bar{\phi}, \phi\right)} . \\
\delta(\Lambda) \Gamma[W]=-\int \mathrm{d}^{4} x \Lambda^{A}\left(\mathcal{D}_{\mu} \frac{\delta \Gamma[W]}{\delta W_{\mu}}\right)_{A} \equiv \int \mathrm{~d}^{4} x \Lambda^{A} \mathcal{A}_{A},
\end{gathered}
$$

- The anomaly satisfies the Wess-Zumino consistency conditions:

$$
\delta\left(\Lambda_{1}\right)\left(\Lambda_{2}^{1} \Lambda_{A}\right)-\delta\left(\Lambda_{2}\right)\left(\Lambda_{1}^{1} \Lambda_{A}\right)=\Lambda_{1}^{P} \Lambda_{2}^{C} f_{B C}{ }^{\wedge} \Lambda_{A}
$$

- For instance, for an arbitrary non-abelian gauge group, the consistent form of the anomaly is given by:

$$
\mathcal{A}_{A} \sim \varepsilon^{\mu \nu \rho \sigma} \operatorname{Tr}\left(T_{A} \partial_{\mu}\left(W_{\nu} \partial_{\rho} W_{\sigma}+\frac{1}{2} W_{\nu} W_{\rho} W_{\sigma}\right)\right)
$$

## Anomalies

- Anomalies indicate a non-invariance of the effective action $\Gamma\left[W_{\mu}\right]$ :

$$
\begin{gathered}
\mathrm{e}^{-\Gamma\left[W_{\mu}\right]}=\int \mathcal{D} \bar{\phi} \mathcal{D} \phi \mathrm{e}^{-\mathcal{S}\left(W_{\mu}, \bar{\phi}, \phi\right)} . \\
\delta(\Lambda) \Gamma[W]=-\int \mathrm{d}^{4} x \Lambda^{A}\left(\mathcal{D}_{\mu} \frac{\delta \Gamma[W]}{\delta W_{\mu}}\right)_{A} \equiv \int \mathrm{~d}^{4} x \Lambda^{A} \mathcal{A}_{A},
\end{gathered}
$$

- The anomaly satisfies the Wess-Zumino consistency conditions:

$$
\delta\left(\Lambda_{1}\right)\left(\Lambda_{2}^{A} \mathcal{A}_{A}\right)-\delta\left(\Lambda_{2}\right)\left(\Lambda_{1}^{A} \mathcal{A}_{A}\right)=\Lambda_{1}^{B} \Lambda_{2}^{C} f_{B C}{ }^{A} \mathcal{A}_{A} .
$$

- For instance, for an arbitrary non-abelian gauge group, the consistent form of the anomaly is given by:

$$
\mathcal{A}_{A} \sim \varepsilon^{\mu \nu \rho \sigma} \operatorname{Tr}\left(T_{A} \partial_{\mu}\left(W_{\nu} \partial_{\rho} W_{\sigma}+\frac{1}{2} W_{\nu} W_{\rho} W_{\sigma}\right)\right)
$$

## Anomalies

- Anomalies indicate a non-invariance of the effective action $\Gamma\left[W_{\mu}\right]$ :

$$
\begin{gathered}
\mathrm{e}^{-\Gamma\left[W_{\mu}\right]}=\int \mathcal{D} \bar{\phi} \mathcal{D} \phi \mathrm{e}^{-\mathcal{S}\left(W_{\mu}, \bar{\phi}, \phi\right)} . \\
\delta(\Lambda) \Gamma[W]=-\int \mathrm{d}^{4} x \Lambda^{A}\left(\mathcal{D}_{\mu} \frac{\delta \Gamma[W]}{\delta W_{\mu}}\right)_{A} \equiv \int \mathrm{~d}^{4} x \Lambda^{A} \mathcal{A}_{A},
\end{gathered}
$$

- The anomaly satisfies the Wess-Zumino consistency conditions:

$$
\delta\left(\Lambda_{1}\right)\left(\Lambda_{2}^{A} \mathcal{A}_{A}\right)-\delta\left(\Lambda_{2}\right)\left(\Lambda_{1}^{A} \mathcal{A}_{A}\right)=\Lambda_{1}^{B} \Lambda_{2}^{C} f_{B C}{ }^{A} \mathcal{A}_{A} .
$$

- For instance, for an arbitrary non-abelian gauge group, the consistent form of the anomaly is given by:

$$
\mathcal{A}_{A} \sim \varepsilon^{\mu \nu \rho \sigma} \operatorname{Tr}\left(T_{A} \partial_{\mu}\left(W_{\nu} \partial_{\rho} W_{\sigma}+\frac{1}{2} W_{\nu} W_{\rho} W_{\sigma}\right)\right)
$$

## Anomalies

- Note that if $\Gamma$ is non-invariant under gauge transformations, also its supersymmetry variation is non-vanishing:

$$
\mathcal{A}=\delta \Gamma(W)=\delta(\Lambda) \Gamma[W]+\delta(\epsilon) \Gamma[W]=\int \mathrm{d}^{4} x\left(\Lambda^{A} \mathcal{A}_{A}+\bar{\epsilon} \mathcal{A}_{\epsilon}\right)
$$

- A full cohomological analysis of anomalies in supergravity has been made (Brandt):

- The coefficients $d_{A B C}$ form a totally symmetric tensor, given in terms of generators of the gauge group:

$$
d_{A B C} \sim \operatorname{Tr}\left(\left\{T_{A}, T_{B}\right\} T_{C}\right)
$$

## Anomalies

- Note that if $\Gamma$ is non-invariant under gauge transformations, also its supersymmetry variation is non-vanishing:

$$
\mathcal{A}=\delta \Gamma(W)=\delta(\Lambda) \Gamma[W]+\delta(\epsilon) \Gamma[W]=\int \mathrm{d}^{4} x\left(\Lambda^{A} \mathcal{A}_{A}+\bar{\epsilon} \mathcal{A}_{\epsilon}\right)
$$

- A full cohomological analysis of anomalies in supergravity has been made (Brandt):

$$
\begin{aligned}
\mathcal{A}_{C}= & -\frac{1}{4} \mathrm{i}\left[d_{A B C} F_{\mu \nu}^{B}+\left(d_{A B D} f_{C E}^{B}+\frac{3}{2} d_{A B C} f_{D E}^{B}\right) W_{\mu}^{D} W_{\nu}^{E}\right] \tilde{F}^{\mu \nu A} \\
\bar{\epsilon} \mathcal{A}_{\epsilon}= & \operatorname{Re}\left[\frac{3}{2} \mathrm{i} d_{A B C} \bar{\epsilon}_{R} \lambda_{R}^{C} \bar{\lambda}_{L}^{A} \lambda_{L}^{B}+\mathrm{i} d_{A B C} W_{\nu}^{C} \tilde{F}^{\mu \nu A} \bar{\epsilon}_{L} \gamma_{\mu} \lambda_{R}^{B}\right. \\
& \left.+\frac{3}{8} d_{A B C} f_{D E}^{A} \varepsilon^{\mu \nu \rho \sigma} W_{\mu}^{D} W_{\nu}^{E} W_{\sigma}^{C} \bar{\epsilon}_{L} \gamma_{\rho} \lambda_{R}^{B}\right]
\end{aligned}
$$

$\rightarrow$ The coefficients $d_{A B C}$ form a totally symmetric tensor, given in terms of generators of the gauge group:

## Anomalies

- Note that if $\Gamma$ is non-invariant under gauge transformations, also its supersymmetry variation is non-vanishing:

$$
\mathcal{A}=\delta \Gamma(W)=\delta(\Lambda) \Gamma[W]+\delta(\epsilon) \Gamma[W]=\int \mathrm{d}^{4} x\left(\Lambda^{A} \mathcal{A}_{A}+\bar{\epsilon} \mathcal{A}_{\epsilon}\right)
$$

- A full cohomological analysis of anomalies in supergravity has been made (Brandt):

$$
\begin{aligned}
\mathcal{A}_{C}= & -\frac{1}{4} \mathrm{i}\left[d_{A B C} F_{\mu \nu}^{B}+\left(d_{A B D} f_{C E}^{B}+\frac{3}{2} d_{A B C} f_{D E}^{B}\right) W_{\mu}^{D} W_{\nu}^{E}\right] \tilde{F}^{\mu \nu A}, \\
\bar{\epsilon} \mathcal{A}_{\epsilon}= & \operatorname{Re}\left[\frac{3}{2} \mathrm{i}_{A B C} \bar{\epsilon}_{R} \lambda_{R}^{C} \bar{\lambda}_{L}^{A} \lambda_{L}^{B}+\mathrm{i} d_{A B C} W_{\nu}^{C} \tilde{F}^{\mu \nu A} \bar{\epsilon}_{L} \gamma_{\mu} \lambda_{R}^{B}\right. \\
& \left.+\frac{3}{8} d_{A B C} f_{D E}^{A} \varepsilon^{\mu \nu \rho \sigma} W_{\mu}^{D} W_{\nu}^{E} W_{\sigma}^{C} \bar{\epsilon}_{L} \gamma_{\rho} \lambda_{R}^{B}\right] .
\end{aligned}
$$

- The coefficients $d_{A B C}$ form a totally symmetric tensor, given in terms of generators of the gauge group:

$$
d_{A B C} \sim \operatorname{Tr}\left(\left\{T_{A}, T_{B}\right\} T_{C}\right) .
$$

## Cancellation

- In order to achieve cancellation, we set:

$$
C_{A B, C}^{(\mathrm{CS})}=C_{A B, C}^{(m)}=C_{A B, C}-C_{A B, C}^{(\mathrm{CS})} .
$$

- Using this identification, the sum of $S_{f}+S_{\mathrm{CS}}$ is still not gauge- and supersymmetry-invariant. However:

where $\mathcal{A}^{(s)}$ represents the expression for the anomaly with $d_{A B C} \rightarrow C_{A B, C}^{(s)}$.
- In other words. when

$$
C_{A B, C}^{(\mathrm{CS})}=C_{A B, C}^{(m)}, \quad C_{A B, C}^{(s)}=d_{A B C}
$$

## Cancellation

- In order to achieve cancellation, we set:

$$
C_{A B, C}^{(\mathrm{CS})}=C_{A B, C}^{(m)}=C_{A B, C}-C_{A B, C}^{(\mathrm{CS})} .
$$

- Using this identification, the sum of $\hat{S}_{f}+S_{\mathrm{CS}}$ is still not gauge- and supersymmetry-invariant. However:

$$
\begin{aligned}
\delta(\Lambda)\left(\hat{S}_{f}+S_{\mathrm{CS}}\right) & =-\int \mathrm{d}^{4} x \Lambda^{A} \mathcal{A}_{A}^{(s)}, \\
\delta(\epsilon)\left(\hat{S}_{f}+S_{\mathrm{CS}}\right) & =-\int \mathrm{d}^{4} x \bar{\epsilon} \mathcal{A}_{\epsilon}^{(s)},
\end{aligned}
$$

where $\mathcal{A}^{(s)}$ represents the expression for the anomaly with $d_{A B C} \rightarrow C_{A B, C}^{(s)}$.

- In other words, when

gauge and supersymmetry invariance are restored.


## Cancellation

- In order to achieve cancellation, we set:

$$
C_{A B, C}^{(\mathrm{CS})}=C_{A B, C}^{(m)}=C_{A B, C}-C_{A B, C}^{(\mathrm{CS})} .
$$

- Using this identification, the sum of $\hat{S}_{f}+S_{\mathrm{CS}}$ is still not gauge- and supersymmetry-invariant. However:

$$
\begin{aligned}
\delta(\Lambda)\left(\hat{S}_{f}+S_{\mathrm{CS}}\right) & =-\int \mathrm{d}^{4} x \Lambda^{A} \mathcal{A}_{A}^{(s)}, \\
\delta(\epsilon)\left(\hat{S}_{f}+S_{\mathrm{CS}}\right) & =-\int \mathrm{d}^{4} x \bar{\epsilon} \mathcal{A}_{\epsilon}^{(s)},
\end{aligned}
$$

where $\mathcal{A}^{(s)}$ represents the expression for the anomaly with $d_{A B C} \rightarrow C_{A B, C}^{(s)}$.

- In other words, when

$$
C_{A B, C}^{(\mathrm{CS})}=C_{A B, C}^{(m)}, \quad C_{A B, C}^{(s)}=d_{A B C}
$$

gauge and supersymmetry invariance are restored.

## Supergravity and extended supersymmetry

- So far, we considered rigid supersymmetry. What about supergravity? No extra GCS terms are needed to achieve cancellation.
- All extra contributions (e.g. gravitino contributions) that were not present in susy variation for rigid supersymmetry, vanish without need of extra terms.
- No new contributions to gauge non-invariance.
- In extended supersymmetry : Generalized Chern-Simons terms have been considered, for restoring gauge and supersymmetry invariance.
- Note that in extended supersymmetry, one can show that: $C_{(A B, C)}=0$.

This is consistent with the fact that only $\mathcal{N}=1$ theories have chiral fermions that lead to anomalies.

## Supergravity and extended supersymmetry

- So far, we considered rigid supersymmetry. What about supergravity? No extra GCS terms are needed to achieve cancellation.
- All extra contributions (e.g. gravitino contributions) that were not present in susy variation for rigid supersymmetry, vanish without need of extra terms.
- No new contributions to gauge non-invariance.
- In extended supersymmetry : Generalized Chern-Simons terms have been considered, for restoring gauge and supersymmetry invariance.
- Note that in extended supersymmetry, one can show that: $C_{(A B, C)}=0$

This is consistent with the fact that only $\mathcal{N}=1$ theories have chiral fermions that lead to anomalies.

## Supergravity and extended supersymmetry

- So far, we considered rigid supersymmetry. What about supergravity? No extra GCS terms are needed to achieve cancellation.
- All extra contributions (e.g. gravitino contributions) that were not present in susy variation for rigid supersymmetry, vanish without need of extra terms.
- No new contributions to gauge non-invariance.
- In extended supersymmetry : Generalized Chern-Simons terms have been considered, for restoring gauge and supersymmetry invariance.
- Note that in extended supersymmetry, one can show that:


This is consistent with the fact that only $\mathcal{N}=1$ theories have chiral fermions that lead to anomalies.

## Supergravity and extended supersymmetry

- So far, we considered rigid supersymmetry. What about supergravity? No extra GCS terms are needed to achieve cancellation.
- All extra contributions (e.g. gravitino contributions) that were not present in susy variation for rigid supersymmetry, vanish without need of extra terms.
- No new contributions to gauge non-invariance.
- In extended supersymmetry: Generalized Chern-Simons terms have been considered, for restoring gauge and supersymmetry invariance.

This is consistent with the fact that only $\mathcal{N}=1$ theories have chiral fermions that lead to anomalies.

## Supergravity and extended supersymmetry

- So far, we considered rigid supersymmetry. What about supergravity? No extra GCS terms are needed to achieve cancellation.
- All extra contributions (e.g. gravitino contributions) that were not present in susy variation for rigid supersymmetry, vanish without need of extra terms.
- No new contributions to gauge non-invariance.
- In extended supersymmetry: Generalized Chern-Simons terms have been considered, for restoring gauge and supersymmetry invariance.
- Note that in extended supersymmetry, one can show that:

$$
C_{(A B, C)}=0
$$

This is consistent with the fact that only $\mathcal{N}=1$ theories have chiral fermions that lead to anomalies.

## Conclusions

- We considered gauge and supersymmetry invariance of matter coupled $\mathcal{N}=1$ supergravity with Peccei-Quinn terms, generalized Chern-Simons terms and anomalies.
$>$ 1. Gauge non-invariance of PQ terms is parametrized by $C_{A B, C}=C_{A B, C}^{(s)}+C_{A B, C}^{(m)}$.

2. GCS terms are defined by a tensor $C_{A B, C}^{(C S)}$ of mixed symmetry.
3. Anomalies are proportional to a symmetric tensor $d_{A B C}$.

Invariance is restored when

$$
C_{A B, C}=C_{A B, C}^{(\mathrm{CS})}+d_{A B C}
$$

- Presence of symmetric part in $C_{A B, C}$ and of anomalies is different from extended supersymmetry.
- Generalization to supergravity is straightforward.


## Conclusions

- We considered gauge and supersymmetry invariance of matter coupled $\mathcal{N}=1$ supergravity with Peccei-Quinn terms, generalized Chern-Simons terms and anomalies.
- 1. Gauge non-invariance of PQ terms is parametrized by $C_{A B, C}=C_{A B, C}^{(s)}+C_{A B, C}^{(m)}$.

2. GCS terms are defined by a tensor $C_{A B, C}^{(C S)}$ of mixed symmetry.
3. Anomalies are proportional to a symmetric tensor $d_{A B C}$.

Invariance is restored when

$$
C_{A B, C}=C_{A B, C}^{(C S)}+d_{A B C} .
$$

- Presence of symmetric part in $C_{A B, C}$ and of anomalies is different from extended supersymmetry.
- Generalization to supergravity is straightforward.


## Conclusions

- We considered gauge and supersymmetry invariance of matter coupled $\mathcal{N}=1$ supergravity with Peccei-Quinn terms, generalized Chern-Simons terms and anomalies.
- 1. Gauge non-invariance of PQ terms is parametrized by $C_{A B, C}=C_{A B, C}^{(s)}+C_{A B, C}^{(m)}$.

2. GCS terms are defined by a tensor $C_{A B, C}^{(\mathrm{CS})}$ of mixed symmetry.
3. Anomalies are proportional to a symmetric tensor $d_{A B C}$.

Invariance is restored when

$$
C_{A B, C}=C_{A B, C}^{(\mathrm{CS})}+d_{A B C}
$$

- Presence of symmetric part in $C_{A B, C}$ and of anomalies is different from extended supersymmetry.
- Generalization to supergravity is straightforward.


## Conclusions

- We considered gauge and supersymmetry invariance of matter coupled $\mathcal{N}=1$ supergravity with Peccei-Quinn terms, generalized Chern-Simons terms and anomalies.
- 1. Gauge non-invariance of PQ terms is parametrized by $C_{A B, C}=C_{A B, C}^{(s)}+C_{A B, C}^{(m)}$.

2. GCS terms are defined by a tensor $C_{A B, C}^{(\mathrm{CS})}$ of mixed symmetry.
3. Anomalies are proportional to a symmetric tensor $d_{A B C}$.

Invariance is restored when

$$
C_{A B, C}=C_{A B, C}^{(\mathrm{CS})}+d_{A B C}
$$

- Presence of symmetric part in $C_{A B, C}$ and of anomalies is different from extended supersymmetry.
> Generalization to supergravity is straightforward.


## Conclusions

- We considered gauge and supersymmetry invariance of matter coupled $\mathcal{N}=1$ supergravity with Peccei-Quinn terms, generalized Chern-Simons terms and anomalies.
- 1. Gauge non-invariance of PQ terms is parametrized by $C_{A B, C}=C_{A B, C}^{(s)}+C_{A B, C}^{(m)}$.

2. GCS terms are defined by a tensor $C_{A B, C}^{(\mathrm{CS})}$ of mixed symmetry.
3. Anomalies are proportional to a symmetric tensor $d_{A B C}$.

Invariance is restored when

$$
C_{A B, C}=C_{A B, C}^{(\mathrm{CS})}+d_{A B C}
$$

- Presence of symmetric part in $C_{A B, C}$ and of anomalies is different from extended supersymmetry.
- Generalization to supergravity is straightforward.

