

Searches for non-SM Higgs bosons at the Tevatron

presented by

Per Jonsson Imperial College London

On behalf of the CDF and DØ Collaborations

The 2007 Europhysics Conference on High Energy Physics Manchester, England, July 19-25, 2007

- Introduction
 - Tevatron & experiments
- Non-SM Higgs Searches
 - Minimal Supersymmetric SM
 - tau and b ID
 - Di-tau final state (1 fb⁻¹)
 - 3b/4b final states (0.9 fb⁻¹)
 - Fermiophobic Higgs
 - Higgs in the $3\gamma + X$ final states (0.8 fb⁻¹)
- Prospects & Conclusions

Will only cover recent results using ~1fb⁻¹ [Thanks to all Tevatron colleagues] (1.5fb⁻¹ results are coming soon) **EPS 2007** Per Jonsson - Imperial College London

Tevatron continues to perform well

- Over 3fb⁻¹ delivered to each experiment
- Peak luminosities of $\sim 3 \times 10^{32}$

• Performance matching design integrated luminosity of ~8fb⁻¹

by 2009

- Both detectors extensively upgraded for Run IIa
 - New silicon vertex detector
 - New tracking system
 - Upgraded muon chambers

• DØ

- New solenoid & preshowers
- Run IIb: New inner layer in SMT & L1 trigger

Biggs bosons in the MSSM

- In MSSM have 2 Higgs doublets
 - $H_u(H_d)$ couple to up- (down-) type fermions
 - Ratio of their VEV's: $tan\beta = \langle H_u \rangle / \langle H_d \rangle$
 - 5 Higgs particles after the EWSB: h, H, A, H⁺, H⁻
 - h has to be light: $m_h < \sim 140 \text{ GeV}$
 - At tree level, 2 independent parameters: m_A and $tan\beta$
- At large tan β :
 - Coupling of A, h/H to down-type fermions, e.g. *b*-quark, enhanced wrt SM \rightarrow production amplitude $\sim \tan\beta \rightarrow$ production cross section $\sim \tan^2\beta$
 - h/H & A (denoted by $\phi)$ ~degenerate in mass \rightarrow further increase in cross-section
- For low & intermediate masses
 - Br ($\varphi \rightarrow \tau \tau$) ~10%, Br ($\varphi \rightarrow bb$) ~90%

MSSM Higgs boson production

- Signature
 - Higgs decays to 2 τ 's
 - Further decays of τ's define final states

- 1 or 2 extra b-quarks
- Search for peak in dijet invariant mass

0000

Similar overall sensitivities

g $\cos \sigma$

Per Jonsson - Imperial College London

4b

• CDF: Isolation based

- Require 1 or 3 tracks, $p_T > 1 \text{GeV}$ in the isolation cone
 - For 3 tracks total charge must be ±1
 - $p_{T}^{had} > 15 (20) \text{ GeV for } 1 (3) \text{ prongs}$
 - $M^{had} < 1.8 (2.2) \text{ GeV}$
- Reject electrons via E/p cut
- Validated via W/Z measurements
- Performance
 - Efficiency $\sim 40-50\%$
 - Jet to tau fake rate ~0.001-0.005
 EPS 2007 Per Jonss

• DØ: 3 NN's for each tau type

Eff(%)				
Tau Type	1	2	3	
Reconstruction				
Jets	1.5	10	38	
Taus	9.1	50	20	
NN > 0.9				
Jets	0.04	0.2	0.8	
Taus	5.8	37	13	

- Validated via Z's
- Per Jonsson Imperial College London

- Critical for low/medium mass $\phi \rightarrow bb$
- Use lifetime information
 - Correct for MC / data differences
 - Measured at given operating points

CDF: Secondary vertex reconstruction

- Neural Net improves purity
- Inputs: track multiplicity, p_T, vertex decay length, mass, fit
- Loose = 50% eff, 1.5 % mistag
- Tight = 40% eff, 0.5 % mistag

DØ: Neural Net tagger

- Secondary vertex & dca based inputs, derived from basic taggers
- High efficiency, purity
- Loose = 70% eff, 4.5% mistag
- Tight = 50% eff, 0.5% mistag

Neutral MSSM Higgs $\rightarrow \tau\tau$

- Complementary to the $\phi(\rightarrow bb)$ searches:
 - Lower branching fraction but lower backgrounds
- Main bkgs.: $Z \rightarrow \tau\tau$ (irreducible), W+jets, $Z \rightarrow ee, \mu\mu$, multijet, di-boson
- DØ (μ channel only):
 - Only 1 isolated μ separated from the hadronic τ with opposite sign
 - τ identification: NN based
 - M_W < 20 GeV removes most of remaining W boson bkg.
 - Mass dependent optimized NNs to separat signal from bkg. (M^{vis}, μ and τ kinematics)

- CDF (e, μ , e+ μ channels)
 - Isolated e or μ separated from hadronic τ with opposite sign
 - τ identification: Variable-size cone algorithm
 - Jet background suppression: $|p_t^l| + |p_t^{had}| + |\mathcal{E}_T| > 55$ GeV
 - remove most of W bkg. by cutting on relative directions of the visible τ decay products and missing E_{τ} EPS 2007 Per Jonsson - Imperial College London

Reutral MSSM Higgs $\rightarrow \tau \tau$

- CDF: Limits derived from m_{vis} distribution
 - Observed limits weaker than expected due to an excess in data sample, but significance $\leq 2\sigma$ once all search channels & windows considered

• DØ: Cross-section limits: NNs for the different tau types

Neutral MSSM Higgs $\rightarrow \tau \tau$

Neutral MSSM Higgs \rightarrow bb + b[b]

- DØ: ICHEP '06
- $\phi \rightarrow bb$ swamped by QCD bckg
- Look for associated b and $\phi \rightarrow bb$
- \geq 3 b-tagged jets: $p_T > 40, 25, 15 \text{ GeV}$
 - Invariant mass of 2 leading jets peaks at Higgs mass
- Backgrounds from data
 - Shape estimated from double-tagged dijet mass spectrum
 - Rate normalized outside signal window
- Agreement between data & predicted background → set upper limits
- Analysis being optimized

Fermiophobic Higgs $\rightarrow 3\gamma + X$

- Some extensions of SM: coupling of higgs to fermions suppressed
- Sufficiently light h will decay to $\gamma\gamma$ with ~100% probability
- Search for the channel:

 $p\overline{p} \to h_{f}H^{\pm} \to h_{f}h_{f}W^{\pm} \to \gamma\gamma\gamma\left(\gamma\right) + X$

- Cuts
 - 3γ with $|\eta| < 1.1$, $E_T^{1,2,3} > 30$, 20, 15 GeV
- Backgrounds
 - Jets or electrons misidentified as γ and direct 3γ production
 - Estimated from data
- $\Sigma \overline{p}_T(3\gamma) > 25 \text{GeV}$
 - 0 events seen for 1.1 expected
 - 95% CL limit: $\sigma(hH^{\pm}) < 25.3 \, \text{fb}$
- Exclusion on mass of h_f for different charged Higgs masses $(m_H \pm)$ & tan β

Prospects & Conclusions

- Tevatron and CDF/ DØ experiments performing very well •
 - Over 2.5 times more data under analysis
 - Expect up to 8 fb⁻¹/exp in Run II
- 1st results from 1fb⁻¹ show very promising sensitivity ٠
 - No signal observed, but already powerful!
- MSSM Short term:
 - New $\phi \rightarrow bb + b[b]$
 - From both experiments
 - $-\phi \rightarrow bb + b[b], \phi \rightarrow \tau\tau \&$ $b\phi \rightarrow b\tau\tau$ (not discussed) combination
- Longer term
 - Exclude up to $m_A \sim 250$ GeV for large tan β
 - Down to $\tan\beta \sim 20$ for low m_A
 - Or discovery

Very exciting times ahead!

EPS 2007

Prospects & Conclusions

Ł

Backup slides

EPS 2007

B-tagging – (DØ) Certification

SSM benchmarks

- Five additional parameters due to radiative correction
 - M_{SUSY} (parameterizes squark, gaugino masses)
 - X_t (related to the trilinear coupling $A_t \rightarrow$ stop mixing)
 - M₂ (gaugino mass term)
 - $-\mu$ (Higgs mass parameter)
 - M_{gluino} (comes in via loops)
- Two common benchmarks
 - Max-mixing Higgs boson mass
 m_h close to max possible value
 for a given tanβ
 - No-mixing vanishing mixing in stop sector → small mass for h

	m _h -max	no-mixing
M _{SUSY}	1 TeV	2 TeV
X,	2 TeV	0
M2	200 GeV	200 GeV
μ	±200 GeV	±200 GeV
mg	800 GeV	1600 GeV

No excess seen in this channel

EPS 2007

