

SUSY Trilepton Searches at the Tevatron

Harald Fox Albert-Ludwigs-Universität Freiburg

On behalf of the DØ and CDF experiments.

Supersymmetry

Supersymmetry provides possible solutions for remaining problems of the Standard Model:

- Dark Matter Candidate
- Unification of gauge
 couplings at high energies
- Fine tuning of corrections to the Higgs mass

R-r	parity = +1		R–pa	arity = -1		R–parity = –1	1
Particle	Sýmbol	Spin	Particle	Symbol	Spin	Particle Symbol	Spin
Lepton	l	$\frac{1}{2}$	Slepton	$\tilde{\ell}_{\rm L}, \tilde{\ell}_{\rm R}$	0		
Neutrino	u	$\frac{1}{2}$	Sneutrino	$\tilde{ u}$	0		
Quark	q	$\frac{1}{2}$	Squark	$\tilde{q}_{\rm L}, \tilde{q}_{\rm R}$	0		
Gluon	g	1	Gluino	ğ	$\frac{1}{2}$		
Photon	γ	1	Photino	$ ilde{\gamma}$	$\frac{1}{2}$		
Z Boson	Z	1	Zino	$\tilde{\mathrm{Z}}$	$\frac{\overline{1}}{2}$		
W Boson	W^{\pm}	1	Wino	\tilde{W}^{\pm}	$\frac{1}{2}$	Neutralino $ ilde{\chi}_{ m i}^0$	$\frac{1}{2}$
Higgs	$\mathrm{H}^{0},\mathrm{H}^{\pm}$	0	Higgsino	$\tilde{\mathrm{H}}_{1}^{0}, \tilde{\mathrm{H}}_{2}^{+}$	$\frac{1}{2}$	Chargino $ ilde{\chi}_{ m j}^{\pm}$	$\frac{1}{2}$
	$\mathrm{h}^{0},\mathrm{A}^{0}$	0		$\tilde{\mathrm{H}}_{1}^{-},\tilde{\mathrm{H}}_{2}^{0}$	$\frac{1}{2}$		

Tevatron

- Proton-Antiproton Collider
- Centre-of-mass Energy 1.96 TeV
- Integrated luminosity $\sim 3 \text{ fb}^{-1}$ so far
- RunIIb upgrade of accelerator and detectors succesfully completed

Run II Integrated Luminosity

CDF & DØ

DØ

Two General Purpose Detectors: CDF |η|<2.0 |η|<3.0 Electron acceptance |η|<1.5 |η|<2.0 Muon acceptance |η|<2.0 |η|<3.0 Silicon Precision tracking |η|<3.6 |η|<4.2 Calorimeter

Powerful trigger systems (2.5MHz \rightarrow 50Hz) Dilepton triggers starting at $p_T > 4 \text{GeV}$ Jets + MET with E_T >25GeV

Average Efficiency up to ~90%

Production and Decay Mode

- Associated production of charginos and neutralinos
 - s-channel: via W boson
 - t-channel: squark exchange
 - Destructive interference
- Final state consists of
 - Three charged leptons
 - Two neutralinos (LSP)
 - One neutrino
- Golden decay mode for chargino/neutralino search at the Tevatron
- Challenges:
 - Leptons can have low transverse momenta
 - $\sigma x BR$ is small (<0.5pb)

Backgrounds

- Background Components
 - Vector boson production
 - Z/γ*->ee/μμ (2 leptons)
 - $Z/\gamma^* \rightarrow \tau \tau$ (2 leptons + MET)
 - W+jets/ γ (1 lepton + MET)
 - Vector boson pair production
 - WW (2 leptons + MET)
 - WZ (3 leptons + MET)
 - ZZ (2 leptons + MET or 4 leptons)
 - Other components
 - Multijet production (no isolated leptons)
 - tt (2 leptons + MET)
 - Y (2 leptons)
- QCD contribution determined from data by inverting lepton ID criteria

Selection Strategy

- Trilepton analysis
 - Require **two reconstructed leptons** (either e or μ)
 - Require significant MET to account for escaping neutralinos/neutrinos
 - Require one additional lepton candidate
 - Isolated high quality track (e, μ and τ ; DØ)
 - A reconstructed lepton (e or µ)

- Likesign dilepton analysis
 - Require two reconstructed leptons of the same charge
 - Require significant MET to account for escaping neutralinos/neutrinos
 - No requirement for a third object

Event Selection (1)

- Preselection
 - Two well reconstructed leptons (ee, μμ, eμ)
 - $p_T > 5-20$ GeV for the leading lepton
 - $p_T > 5-10$ GeV for the next-to-leading lepton
- Anti Z/γ* requirements
 - Invariant mass between resonances
 - Not back-to-back
- Anti tt requirement
 - Reject events with high jet activity
 - Number of jets (CDF)
 - Sum of jet momenta
- Third lepton candidate

Event Selection (2)

- Anti Multi-Jet requirements
 - Requirement on number of jet or on the sum of the jet p_T

- Third Lepton
 - Reconstructed lepton or track isolated in tracker and calorimeter

Event Selection (3)

- Anti Multi-Jet requirements
 - MET > 10 20 GeV
 - DØ only
 - Transverse mass

- MET significance > 8 GeV
- Product of MET and track $\ensuremath{p_{\text{T}}}$
- Sum of p_T

Systematic Studies (CDF)

CR Z is everything with 2 leps in the Z mass, regardless of Njets or Met; Z tight is both leptons > 20 GeV;

10 August 2006

Giulia Manca, Exotic Meeting

- Each control region is investigated
 - With different jet multiplicity
 - With 2 leptons required
 - Increased statistics
 - With 3 leptons required
 - Signal like topology

Result: Event Numbers

Trilepton	ее+І сем	ee PL	∋+l ₋ug	eµ+		μμ+l high p _τ	µе+І сем	μe PL	∋+l .ug	ee	e+trk	μμ+ Iow p	- Рт
lum [pb ⁻¹]	1034	9	54	1034	4	745	745	6	80	1	013	976	6
exp bg	0.44 ± 0.08	0.3 0.	34 ± .10	0.28 0.09	±)	0.64 ± 0.18	0.42 ± 0.08	0.3 0.	86 ± 07	0. 0	97 ± 0.28	0.42 0.12	± 2
obs	0		0	0		1	0		0		3	1	
LS Dilep	ee		e,	_{si} e		e _{si} e _{si}	e _{si} µ		eµ		μ	μ	
lum [pb ⁻¹]	993)3 9		93 993		993	971		971		10	87	
exp bg	0.1 ± 0	.1 1.5 ±		± 0.3	1.	.3 ± 0.3	1.7 ± 0.2	2	.3 ± 0).5	0.9 :	£ 0.1	
observed	1			2		1	4		4		-	1	

	ee+l	µµ+l	eµ+l	μμ LS	
lum [pb ⁻¹]	1000	1100	1100	1000	Observed
exp bg	0.76 ± 0.67	0.32 ± 1.34	0.94 ± 0.4	1.1 ± 0.4	→ Set Limit
observed	0	2	1	1	

Constraining SUSY Models

- Combine all trilepton and dilepton channels to set a limit on the chargino mass in a specific model
- CDF and DØ use similar but not identical mSUGRA inspired models
 - CDF: tan β =3, A₀=0, μ >0, m₀=70, m_{1/2}=162-240

− DØ: tanβ=3, A₀=0, μ >0, m(\tilde{I}) ≥ m($\tilde{\chi_2}^0$)

Trileptons in the future

 CDF projected sensitivity based on 1fb⁻¹ analyses expected sensitivity

- DØ assumes an improvement in the analysis in the future.
- At ~200GeV new decay modes become available.

Summary and Outlook

- There is Physics beyond the Standard Model
 - Dark Matter is a convincing indicator
 - **SUSY** is one of the options
- Trilepton final states are the gold plated decay modes at the Tevatron, augmented by like-sign dilepton searches.
- CDF and D0 have seen no significant excess above standard model expections.
- Therefore limits on on the lightest chargino mass could be set

 $m(\chi_1^{\pm}) > 130 \text{ GeV (CDF)}$ $m(\chi_1^{\pm}) > 141 \text{ GeV (DØ)}$

- More data is being analyzed.
- The upgrade for RunIIb has been very successful. Data taking continues. Both experiments take loads of data!

Backup Slides

Tevatron Cross Sections

Total inelastic cross section.

Light quarks are ubiquitous.

Plenty of W and Z bosons \rightarrow calibration.

Evidence of single top production is an important milestone towards the Higgs boson.

The Higgs cross section is 10-11 orders of magnitudes lower than the total inelastic cross section.

	Heavy	Medium	Light
m_0 (GeV)	121	98	88
$\mathrm{m}_{1/2}$ (GeV)	221	192	182
aneta	3	3	3
μ	> 0	> 0	> 0
A_0	0	0	0
$\mathrm{m}_{\tilde{\chi}_1^{\pm}}$ (Gev)	150	125	115
$\mathrm{m}_{ ilde{\chi}_2^9}^{\sim 1}$ (GeV)	152	127	118
$\mathrm{m}_{ ilde{\chi}_1^0}$ (GeV)	82	69	63
$\mathrm{m}_{ ilde{\ell}_{\mathrm{R}}}$ (GeV)	153	129	119
$\sigma imes BR$ (pb)	0.058	0.14	0.22

Like-Sign dileptons

- Signature-based search -- low Standard Model background
- Currently: chargino-neutralino production

CDF Run II Preliminary

Small excess at high pt – waiting to see in new data

Event Numbers: CDF Trilepton

	TRILEPTON ANALYSES										
		$ee(CEM) + \ell$	$ee(PLUG) + \ell$	$e\mu + \ell$	$\mu\mu + \ell$	$\mu e(CEM) + \ell$	$\mu e(PLUG) + \ell$	ee + track	$\mu\mu + \ell$		
					$(high-p_T)$				$(low-p_T)$		
	Luminosity	$1034 \ {\rm pb}^{-1}$	954 pb ⁻¹	1034 pb^{-1}	745 pb^{-1}	745 pb ⁻¹	680 pb ⁻¹	1013 pb^{-1}	$976 \ {\rm pb}^{-1}$		
	Expected										
	number of	1.15 ± 0.19	$0.32\pm~0.07$	$0.84{\pm}~0.14$	$1.60{\pm}~0.22$	0.83 ± 0.12	$0.20\pm\ 0.03$	$1.98 \pm \ 0.13$	$0.57 \pm \ 0.11$		
	signal										
	events										
, [Expected										
	number of SM										
	background	0.44 ± 0.08	0.34 ± 0.10	$0.28 \pm \ 0.09$	$0.64{\pm}~0.18$	$0.42\pm~0.08$	$0.36 \pm \ 0.07$	$0.97{\pm}\ 0.28$	0.42 ± 0.12		
	events										
	Number of										
	observed events	0	0	0	1	0	0	3	1		
				$high-p_T$	trilepton	analyses					
•	signal events Expected number of SM background events Number of observed events	0.44± 0.08	0.34± 0.10 0	0.28± 0.09 0 high-p _T	0.64± 0.18 1 trileptor	0.42± 0.08 0 a analyses	0.36± 0.07	0.97± 0.28 3	0.42± 0.		

Event Numbers: CDF LS-Dilepton

LS-DILEPTON ANALYSES										
	ee LS	$e_{si}e$ LS	$e_{si}e_{si}$ LS	$e_{si}\mu$ LS	$e\mu$ LS	$\mu\mu$ LS				
Luminosity	993 pb ⁻¹	993 pb ⁻¹	993 pb ⁻¹	971 pb ⁻¹	971 pb ⁻¹	$1087 \ {\rm pb}^{-1}$				
Expected										
number of	0.040 ± 0.004	$0.070 \pm\ 0.007$	$0.510 \pm \ 0.051$	$1.540 \pm \ 0.154$	$0.200\pm\ 0.020$	$0.950 \pm \ 0.095$				
signal										
events										
Expected										
number of SM										
background	$0.10\pm~0.10$	1.50 ± 0.30	$1.30 \pm \ 0.30$	1.70 ± 0.20	2.30 ± 0.50	$0.90\pm~0.10$				
events										
Number of										
observed events	1	2	1	4	4	1				

