LHC Challenges and Upgrade Options

O. Brüning CERN, Geneva, Switzerland

Main challenges for the LHC operation

LHC parameters

Introduction: Instantaneous Luminosity

 $L = 10^{34} \text{ cm}^{-2} \text{sec}^{-1}$ small β at IP and high collision energy

Number of particles per bunch:

tune foot print & resonances impose a limit for: N / ε_n LHC with 3 head-on experiments \rightarrow N < 1.5 10¹¹ (ε_n limited by magnet aperture)

Introduction: Maximizing Luminosity II

Number of bunches:

- -operation with more than 115 bunches implies additional unwanted collisions!
- operation requires crossing angle
 has to be increased for large n_b
 triplet aperture reduction
 and luminosity reduction!
- -geometric luminosity reduction factor:

$$R_{\theta} = \frac{1}{\sqrt{1 + \Theta^2}}; \quad \Theta \equiv \frac{\theta_c \sigma_z}{2\sigma_x}$$

Introduction: Maximizing Luminosity III beam size at the IP: $L = \frac{n_b \cdot N_1 \cdot N_2 \cdot f_{rev}}{A}$ small beam size at the IP implies large beam divergence:

 $\sigma_{IP} = \sqrt{\beta_{IP} \cdot \varepsilon} \qquad \qquad \sigma'_{IP} = \sqrt{\frac{\varepsilon}{\beta_{IP}}}$

 \rightarrow large beam size inside the triplet magnets (proportional to $1/\beta_{IP}$)

Nominal LHC triplet magnets: 200 T/m operational gradient (235 T/m peak field on test stand \rightarrow margin for 200 kW heat load) coil aperture of 70mm (50mm for beam screen) \rightarrow 7T / 8.3 T (at the limit of NbTi magnet technology) $\rightarrow \beta_{IP} > 0.55m$

LHC Challenges

operation at the beam-beam limit: beam lifetime; beam halo and background

total beam power:

factor 200 higher than in past storage rings

→ with robust jaws (Fiber reinforced Graphite jaws)

LHC Challenges

operation at the beam-beam limit: beam lifetime; halo and background

total beam power in cold environment (2K): factor 200 higher than in past storage rings

collective effects:

LHC Challenges: Collective Effects

→ impedance of Graphite jaws either limits the minimum collimator opening → limit for β^* or the maximum beam current

phased collimation system for the LHC:

Phase 1: graphite jaws for robustness during commissioning
 Phase 2: nominal performance (low impedance, non-linear or feedback)

operation at the beam-beam limit: beam lifetime; halo and background

total beam power in cold environment (2K): factor 200 higher than in past storage rings

LHC Challenges

collective effects:

electron cloud effect:

LHC Challenges: Electron Cloud Effect

synchrotron light releases electrons from beam screen:

→ electrons get accelerated by p-beam → impact on beam screen
 → generation of secondary electrons → δ_{max}multiplication → e-cloud
 → heating, instabilities and emittance growth (beam size)

average arc heat load [W/m]

operation at the beam-beam limit: beam lifetime; halo and background

total beam power in cold environment (2K): factor 200 higher than in past storage rings

LHC Challenges

collective effects:

electron cloud effect:

I old injector complex and long 'turn around' time for LHC: minimum of 1h loss for each failed ramp

Initial Design Parameters						
Parameters	'white book'	DIR-TECH/84-01 & ECFA 84/85 CERN 84-10				
# bunches	3564	slightly too large (kicker rise time)				
N / bunch	0.34 * 10 ¹¹	margins for beam-beam effects				
β^*	1m	margins for aperture and impedance				
ε _n	1.07µm	factor 3 margin for N_b/ϵ_n for injector chain				
σ*	12µm					
$\sigma_{\rm L}$	7.55cm					
full crossing angle	100µrad	margins for triplet aperture & small R factor				
events / crossing	1 ←→ 4	detector efficiency				
peak luminosity	$0.1*10^{34}$ cm ⁻² sec ⁻¹					
luminosity lifetime	56h	long physic runs ==> efficiency				
E[TeV]	8.14	10 T dipole field (slightly too optimistic)				
E[MJ]	121	70 x energy in existing SC stortage rings				

Nominal Parameters

Parameters	'white book'	Competition with SSC
# bunches	2808	
N / bunch	$1.15 * 10^{11}$	factor 3 smaller margin for beam-beam
β^*	0.55m	reduced margins for aperture and impedance
ε _n	1.75µm	
σ^*	16.7µm	
$\sigma_{\rm L}$	7.55cm	
full crossing angle	285µrad	factor 3 smaller margin for triplet aperture
events / crossing	19.2	
peak luminosity	$1.0*10^{34}$ cm ⁻² sec ⁻¹	
luminosity lifetime	15h	1 physics run per day
E[TeV]	7	
E[MJ]	366	quench & damage potential (200 x)!

Upgrade Options

CERN identified 3 main options for the LHC upgrade and grouped them according to their impact on the LHC infrastructure into three phases (2001):

Phase 0: performance upgrade without hardware modifications

Phase 1: performance upgrade with IR modifications

Phase 2: performance upgrade with major hardware modifications

Ultimate Parameters (Phase0)

Parameters	nominal	'Ultimate'		
# bunches	2808	2808		
N / bunch	1.15 * 10 ¹¹	1.7*10 ¹¹	beam-beam	
β^*	0.55m	0.5m	impedance	
ε _n	1.75µm	1.75µm		
σ^*	16µm	16.7µm		
$\sigma_{\rm L}$	7.55cm	7.55cm		
full crossing angle	285µrad	> 315µrad	triplet aperture	
events / crossing	19.2	44.2	detector efficiency?	
peak luminosity	$1.0*10^{34}$ cm ⁻² sec ⁻¹	$2.4*10^{34}$ cm ⁻² sec ⁻¹		
L lifetime	15h	10h	1 physics run per day	
E[TeV]	7	7 -> 7.45		
E[MJ]	366	541	quench & damage risk	

Phase1 Upgrade Options

increase mechanical aperture of the final focus quadrupoles:

1) New final focus magnets with larger aperture:

- \rightarrow allows smaller β_{IP} values
 - some gain in luminosity if the crossing angle does not need to be increased proportionally
- → provides aperture space for dedicated absorbers
- → allows larger collimator jaw opening! (collective effects)
 Phased final focus upgrade approach:
 - Phase a: low gradient final focus layouts (existing NbTi) (magnet lifetime limited by radiation dose)
 - Phase b: new magnet technology (Nb3Sn [USLARP]) (higher peak field and more radiation hard)

Additional Phase1 Upgrade Options

minimize detrimental effect of beam-beam interactions:

1) Compensate long range beam-beam effects → smaller x-in angle

 \rightarrow new proposal and technology! \rightarrow requires machine studies

 \rightarrow could potentially reduce the required crossing angle

 \rightarrow similar proposal for head-on collisions (\rightarrow larger operation margins)

Additional Phase1 Upgrade Options

minimize luminosity loss due to crossing angle at the IP:

2) early separation scheme in order to minimize geometric reduction:

→ requires magnet integration inside the detectors (back scattering!)

- → requires new magnet technology
- \rightarrow implies parasitic collisions at 4 σ for 25ns bunch spacing

Additional Phase1 Upgrade Options

minimize luminosity loss due to geometric reduction factor:

<u>Scenarios for L = 10^{35} cm⁻² sec⁻¹ peak luminosity</u>

parameter	symbol	ultimate	25 ns, small β*	50 ns, long
protons per bunch	N _b [10 ¹¹]	1.7	1.7	4.9
bunch spacing	∆t [ns]	25	25	50
beam current	I [A]	0.86	0.86	1.22
longitudinal profile		Gauss	Gauss	Flat
rms bunch length	σ _z [cm]	7.55	7.55	11.8
beta* at IP1&5	β * [m]	0.5	0.08	0.25
full crossing angle	θ _c [μrad]	315	0	381
Piwinski parameter	$\phi = \theta_c \sigma_z / (2^* \sigma_x^*)$	0.75	0	2.0
Luminosity reduction		0.8	0.86	0.45
peak luminosity	<i>L</i> [10 ³⁴ cm ⁻² s ⁻¹]	2.3	15.5	10.7
peak events per crossing		44	294	403
initial lumi lifetime	τ _L [h]	14	2.2	4.5
effective luminosity (T _{turnaround} =10 h)	L _{eff} [10 ³⁴ cm ⁻² s ⁻¹]	0.91	2.4	2.5
	T _{run,opt} [h]	17.0	6.6	9.5
effective luminosity (T _{turnaround} =5 h)	L _{eff} [10 ³⁴ cm ⁻² s ⁻¹]	1.15	3.6	3.5
	T _{run,opt} [h]	12.0	4.6 / 2.6	6.7 / 2.9
extent luminous region	σ _ι [cm]	4.3	3.7	5.3
comment			D0 + crab (+ Q0)	wire comp.

W. Scandale and F. Zimmermann LUMI'06

HEP 2007; 20. July 2007

Oliver Brüning/CERN AB-ABP 23

Summary Upgrade Options for Phase 1

final choice depends on main motivation for upgrade:

- 1) overcome limitations in nominal LHC
- 2) increase luminosity by one order of magnitude

need to keep all technical options alive until LHC startup

prepare for a staged upgrade scenario:

- 1) First upgrade in order to overcome potential bottlenecks in LHC operation
- 2) Second upgrade to push performance by factor 10

Upgrade Options: Phase 2

CERN identified 3 main areas for consolidation efforts:
1) New Multi Turn Extraction for the PS → smaller losses

- 2) PS magnet renovation and replacement (PS2):
 → program for refurbishing and replacing 50 magnets until 2008 → not a long term solution → PS2 project
- 3) replacement for main proton linac: LINAC4
 → overcomes bottleneck for 'ultimate' LHC parameters
 → solves maintenance problem for existing LINAC2
 → SPL (second phase) could 'bypass' PSB (space charge)
 4) magnet renovation in the SPS
 → program for refurbishing and replacing SPS magnets

→ CERN 'White Paper'

Upgrade Options: Phase 2 White Paper

Proton Accelerators for the Future (PAF) study - identified upgrade scenarios

□ Reliable operation for the LHC (allow ultimate LHC beam)

already the nominal LHC operation is very challenging!!!

LHC upgrade studies could provide means for overcoming limitations of nominal configuration
→ R&D results should be available shortly after commissioning!

radiation limit of triplet magnets (700fb⁻¹) might be reached by 2013

→ one needs to prepare a replacement now larger triplet aperture will also reduce collimator impedance!

radiation and machine protection issues are very demanding

official collaborations for R&D work and machine studies are launched within US–LARP and the European ESGARD initiatives