Heavy resonances search at Tevatron

Smaïn Kermiche Centre de Physique des Particules de Marseille IN2P3/CNR5 Université de la méditerranée

On behalf of the

And

collaborations

Centre de Physique des Particule de Marseille

CP

- Tevatron Collider, CDF and D0 detectors
- Spin 0 resonances searches
 - High mass RPV sneutrino : $q\overline{q} \rightarrow \widetilde{v}_{\tau} \rightarrow e\mu$
- Spin 1/2 resonances searches

• Excited quarks (q*) : $q + g \rightarrow q^* \rightarrow Z^o(e^+e^-) + q$

• Spin 1 resonances searches

- W': tb (tb),ev
- Z' : e⁺e⁻,tt
- Spin 2 resonances searches

• RS graviton : $\gamma\gamma$, e^+e^- , $e^+e^- + \gamma\gamma$, Z^oZ^o

Tevatron - CDF - DO

→ Tevatron in Fermilab near Chicago (USA): The most powerfull collider running → Circumference : 6.4 Km → $p\bar{p}$ collisons - $\sqrt{s} = 1.96$ TeV → Run I (1992 - 96) : 0.1 fb⁻¹/exp → Run IIa (2002 - 06): 1.3 fb⁻¹/exp. → Run IIb (untill 2009) : ~ 8 fb⁻¹/exp.

Collider Run II Integrated Luminosity 3500.00 50.00 45.00 3000.00 40.00 2500.00 35.00 30.00 2000.00 25.00 1500.00 20.00 Run Integr 15.00 1000.00 10.00 500.00 5.00 0.00 0.00 5 20 185 200 215 230 245 260 275 290 305 320 Week

(Week 1 starts 03/05/01)

CDF and DO : Typical multipurpose collider detectors with (starting from the interaction point) : Trackers, Calorimters (EM, Had), Muon detectors.

Smaïn Kermiche

Neekly Integrated Luminosity (pb^{.1})

Selection:

<u>MC :</u> Pythia

Spin 1/2 resonances : Excited Fermions

- Excited fermions occur in compositeness models where the known fermions are bound states of more fundamental particles which are bound together by a new strong interaction.
- Relevant parameters :
 - M_{f*} : excited fermion mass
 - Λ : Compositeness scale

Search of q* produced by a gluon-quark fusion : $q + g \rightarrow q^* \rightarrow Z^0 (e^+ e^-) + q$ B

Data : L = 0.37 fb -1

Selection :

• 2 hight pT isolated electrons, with

• p_T¹ > 30 GeV

• p_T² > 25 GeV

- Cut around Z mass : 80 GeV < M_{e+e-} < 120 GeV</p>
- At least 1 hight p_T jet : p_T > 20 GeV

SM backgrounds :

- Main :
 - Drell-Yann $(Z/\gamma^* \rightarrow e^+ e^-)$
- Other (small):
 - $W \rightarrow ev + jet$
- + QCD (Instrumental) background <u>MC :</u> Pythia 6.2, PDF CTEQ5L + ALPGEN

Excited quarks : q*

No excess -> Upper limits in the q* gauge model (95% CL)

🗾 🛛 Smaïn Kermiche

• Some models propose SM extensions with additional symmetry groups (to explain hierarchy problems, fundamental forces unification, etc ...)

• Left-Right symmetric models $(SU(2)_L XSU(2)_R) : W', Z'$

• E(6) Guts : Z'_{I} , Z'_{ψ} , Z'_{χ} , Z'_{η}

W' search in tb (tb)

Search for a massive W-like boson, SM-like couplig to fermions : $q\overline{q}' \rightarrow W' \rightarrow t\overline{b} \rightarrow Wb\overline{b} \rightarrow lvjj$

Masse range : 300 GeV - 950 GeV

<u>Data :</u> *L = 1 fb -1*

<u>Selection (a la single top) :</u>

- 1 hight E_T isolated lepton : E_T>30 GeV
- Large missing $E_T : E_T > 25 \text{ GeV}$
- 2 or 3 energetic jets : $E_T > 15 \text{ GeV}$
- At least one displaced secondary vertex

Backgrounds :

- W : *Wbb̄,c̄c̄,Wcj*
- Dibosons : WWWZ
- Z + jets
- Single top and $t\bar{t}$
- QCD (Instrumental) background <u>MC</u>: ALPGEN, HERWIG, and PYTHIA

Smaïn Kermiche

W' search in ev

Search for a massive W-like boson, SM-like coupling to fermions :

 $q\bar{q}' \rightarrow W' \rightarrow ev$

<u>Data :</u> *L = 0.9 fb -1*

Selection :

- 1 hight E_{τ} isolated electron : E_{τ} > 30 GeV
- Large missing $E_T : E_T > 30 \text{ GeV}$
- E_T opposite to electron : 0.7 < E_T / E_T < 1.3
- \bullet Jets not back-to-back to electron or ${\ensuremath{\textit{E}_{T}}}$

Backgrounds :

• SM : electron + Missing E_T

 $Z^{0}/\gamma^{\star} \rightarrow e^{+}e^{-}$

• QCD (Instrumental) background

 $m_T = \sqrt{2E_T \not\!\!\!E_T (1 - \cos \Delta \phi (\text{electron, MET}))}$

No excess -> Upper limits (95% CL)

Z' search in e^+e^- events

Search for a narrow resonance decaying into $e^{\scriptscriptstyle +}e^{\scriptscriptstyle -}$

$$q\bar{q} \rightarrow Z' \rightarrow e^+e^-$$

The search mass range : 150 GeV -950 GeV

Data: L = 1.3 fb -1

Selection :

- 1 hight E_{T} isolated electron :
 - E_T > 25 GeV
 - |eta| < 1.1, Central Calorimeter(CC)
- 1 hight E_T electron :
 - E_T > 25 GeV
 - $|\eta|$ < 1.1 or 1.2 < $|\eta|$ < 3.0 (CC or plug Calorimeter)
- 1 track matching in CC
- 1 photon conversion veto

Backgrounds :

• Drell-Yann : $Z^{0}/\gamma^{*} \rightarrow e^{+}e^{-}$ • *jet* + *jet*, $W \rightarrow e + v + \gamma/jet$, $\gamma + \gamma$ <u>MC</u> : PYTHIA, PDF CTEQ5L

Z' search in e⁺e⁻ events

No excess -> Upper limits (95% CL)

Mass Limits Z':					
Z' Model	Z'_{SM}	Z'_{ETA}	Z'_{CHI}	Z'_{PSI}	Z'_{IOTA}
Mass Limit (GeV/c^2)	923	891	822	822	729

-

Z' search in $t\bar{t}$ events

Study the invariant mass of the $t\bar{t}$ system.

Set model independent limits on a new resonant $t\bar{t}$ production

Interpreted it as a Z^\prime :

 $q\bar{q} \rightarrow Z' \rightarrow t\bar{t}$

<u>Data :</u> *L = 1 fb -1*

- <u>Selection</u>: (Standard b-tagged top mass selection)
- 1 central high E_{T} lepton : E_{T} > 20 GeV
- High missing E_{T} : E_{T} > 20 GeV
- 4 jets with $|\eta|$ < 2.0 :
 - 3 jets with $E_T > 15 \text{ GeV}$
 - the 4^{th} jet with $E_T > 8 \text{ GeV}$
- At least 1 jet with a secondary vertex.

Backgrounds :

- SM *tt*
- <u>MC :</u>
- HERWIG
- Signal : PYTHIA heavy Z^o-like neutral boson (mass : 450-900 GeV every 50 GeV, width =1.2%*mass)

Z' search in $t\bar{t}$ events

No excess -> Upper limits (95%CL)

• Massive Z' SM-like couplings : out of range of our sensitivity

- With more lumi we can exclude a RS KK gluon
- For a leptophobic topcolor Z' : $M_{Z'}$ > 720 GeV (95% CL).

Spin 2 resonances

- Additional models to explain the hierarchy scale between EW symmetry breaking scale (~ 1 TeV) and Planck scale ($M_{p/} \sim 10^{16}$ TeV) where gravity becomes strong.
- Randall-Sundrum (RS) model : Gravity on a (3+1)-dimentional brane, the Plank brane.
- Separated from SM brane by a 5th extra-dimension with a warped metric.
- Gravitons are the only (spin 2) particles propagating in the extra-dimension.
- Graviton wave function suppressed exponentially from Planck brane to SM brane : Gravity weak in SM.
- RS gravitons towers of Kaluza-Klein excitations, with different modes.
- Zero mode RS graviton decays in the SM brane into di-photons or dileptons :

$$Br(G \to \gamma\gamma) = 2 \times Br(G \to l^+l^-)$$

- Characterized by its masse M_1 and the coupling to the SM fields $k/\overline{M_n}$, where :
 - k: the warp factor giving the extra dimension curvature
 - $\overline{M}_{p\prime} = M_{p\prime} / \sqrt{8\pi}$
- EW data constraints + perturbative model : k/\overline{M}_{pl} values between 0.01 and 0.1

Search for RS Graviton in yy events

Search for high mass di-photon states : $q\bar{q} (gg) \rightarrow G \rightarrow \gamma\gamma$

<u>Data :</u> *L = 1.2 fb -1*

Selection :

- 2 hight E_T isolated photons :
 E_T > 15 GeV
- M_{vv} > 30 GeV

Backgrounds :

- SM : Di-photons production
- Jets $\rightarrow \pi^0$

<u>MC :</u>

- Background (γγ) : Diphox NLO+PYTHIA
- Signal (RS graviton) : HERWIG, PDF CTEQ5L

-

20

Search for RS Graviton in $\gamma\gamma + e^+e^-$ events

Search for high mass di-photon or di-electron final states :

$$q\overline{q} (gg) \rightarrow G \rightarrow \gamma\gamma \text{ or } e^+e^-$$

<u>Data : *L* = 1.1 fb -1</u>

Selection :

- \bullet 2 hight p_{T} isolated EM objects :
 - p_T > 25 GeV
 - $|\eta| < 1.1$ (Central Calorimeter)
- M_{EM-EM} > 50 GeV

Backgrounds :

- SM :
 - Drell-Yann : $Z^{0}/\gamma^{*} \rightarrow e^{+}e^{-}$
 - Direct γγ production
- Instrumental : $jet + jet, W \rightarrow e + v + \gamma/jet, \gamma + \gamma$ <u>MC</u>: PYTHIA

Search for RS Graviton in $\gamma\gamma+e^+e^-$ events

Search for RS Graviton in eeee events

Search a massive resonance : m > 500 GeV Decaying into Z⁰Z⁰ in the final state

$$q\bar{q} (gg) \rightarrow G \rightarrow Z^{\circ}Z^{\circ} \rightarrow e^{+}e^{-}e^{+}e^{-}$$

Selection :

- 1 hight E_{T} isolated electron : E_{T} > 20 GeV
- At least 3 electron with
 - Isolated CC energy : $E_T > 5 \text{ GeV}$

Or

- Isolated track p_T > 10 GeV
- Select ZZ-> eeee events with a χ^2 cut :

 $\chi^2 = \sum \left(\frac{m_{ee} - m_{Z^0}}{\sigma}\right)^2$

Backgrounds :

• SM : Z + jets, W+jets

• + QCD <u>MC :</u> HERWIG

Smaïn Kermiche

24 🛯

Search for RS Graviton in eeee events

- In this talk, we presented the Tevatron CDF and DO searches of heavy resonances.
- Those searches were based on RunIIa data giving more than 1 fb-1 data per experiment.
- No evidence of new physics or deviations from the SM observed.
- We set model independent σxBr of the production of such resonances, and also interpreted them using different models and extracted limits on their masses as :
 - sneutrinos
 - Excited quarks (q*)
 - W'
 - Z'
 - RS graviton
- Too many other results not presented here, apologize ...
- Tevatron delivered more than 3 fb-1 per experiment, data are being analyzed, more exciting results are coming soon. Expect 8 fb⁻¹ per experiment by 2009 !

Backup slides

Spin 0 resonances : Susy RPV $\widetilde{v}_{ au}$

Channel	Control Region	Signal Region
$egin{array}{c} Z ightarrow au au \ diboson \ t \overline{t} \ f \ ake \ lepton \end{array}$	$\begin{array}{c} 38.77 \pm 0.63 \pm 2.33 \\ 6.63 \pm 0.18 \pm 0.37 \\ 3.57 \pm 0.05 \pm 0.21 \\ 2.90 \pm 1.10 \pm 1.33 \end{array}$	$\begin{array}{c} 0.57 \pm 0.01 \pm 0.03 \\ 3.48 \pm 0.10 \pm 0.19 \\ 3.16 \pm 0.05 \pm 0.19 \\ 0.44 \pm 0.40 \pm 0.40 \end{array}$
Prediction Observation	$51.87 \pm 1.11 \pm 2.72 \\ 56$	$7.66 \pm 0.41 \pm 0.48 \\ 5$

$\alpha_t \times L$ Uncertainty Source	Fractional Sys. Uncert.
E & P Resolution	3.2%
PDF's	2.4%
Scale Factors	1.6%
Luminosity	6%
N_{BG} Uncertainty Source	Fractional Sys. Uncert.
Luminosity	5.6%
Fake Probabilities	3.1%

Excited quarks : q*

M_{q^*} (GeV)	k	σ_{95} (pb)	σ_{95}^{ave} (pb)	$\begin{array}{l} {\rm Acceptance} \\ \times {\rm ~efficiency} \end{array}$	SM background	Data (events)
300	1.1	0.25	0.290	0.140 ± 0.009	32.8 ± 2.9	31
400	1.2	0.15	0.129	0.164 ± 0.010	7.5 ± 0.8	9
500	1.3	0.08	0.079	0.195 ± 0.012	2.9 ± 0.8	3
600	1.8	0.05	0.053	0.244 ± 0.014	1.6 ± 0.6	1
700	1.7	0.03	0.044	0.243 ± 0.014	0.64 ± 0.06	0

W' search in $t\overline{b}(\overline{t}b)$

Background	2 Jets	3 Jets
$W b \overline{b}$	170.9 ± 50.7	38.2 ± 10.2
$Wcar{c}$	63.4 ± 19.9	15.2 ± 4.8
Wcj	68.6 ± 19.0	12.3 ± 3.4
Mistags	136.1 ± 19.7	42.9 ± 7.0
$\operatorname{Non-}W$	26.2 ± 15.9	26.2 ± 15.9
$t ar{t}$	58.35 ± 13.46	129.03 ± 29.62
Singtop $(s+t)$	37.8 ± 5.87	8.83 ± 1.37
WW	5.5 ± 0.96	1.69 ± 0.32
WZ	7.96 ± 0.83	2.05 ± 0.28
Z+Jets	11.92 ± 4.42	4.47 ± 2.79
Total BG	587.8 ± 96.5	257.5 ± 39.7
Data	644	279

W' search in $t\overline{b}(\overline{t}b)$

FIG. 6: Observed limits and expect limits in the 2-jet bin.

FIG. 7: Observed limits and expected limits in the 3-jet bin.

FIG. 8: Observed limits and expect limits in 2+3 jets for electrons.

FIG. 9: Observed limits and expected limits in 2+3 jets for muons.

W' search in ev

Process	Events	Statistical error	Systematical error	
			(+)	(-)
Data	630			1
Sum Backgrounds	622.93	17.91	82.65	75.25
$W \rightarrow e\nu$	572.73	17.49	77.42	71.19
$W \rightarrow \tau \nu$	10.10	2.26	3.37	1.86
$Z \rightarrow ee$	0.07	0.03	0.01	0.01
$Z \rightarrow \tau \tau$	1.11	0.08	0.32	0.18
$WW, WZ, ZZ, t\bar{t}$ (incl.)	15.47	1.08	2.57	2.75
QCD (from data)	23.46	2.97	0.94	0.94
$W' \to e\nu \ (500 \text{ GeV})$	1032.16	22.45	164.19	164.00
$W' \rightarrow e\nu \ (600 \text{ GeV})$	349.91	7.39	61.42	61.87
$W' \rightarrow e\nu$ (700 GeV)	131.02	2.93	30.92	29.93
$W' \rightarrow e\nu \ (800 \text{ GeV})$	46.16	1.05	13.68	13.07
$W' \rightarrow e\nu \ (900 \text{ GeV})$	16.64	0.39	6.86	6.06
$W' \rightarrow e\nu \ (1000 \text{ GeV})$	6.56	0.16	3.54	2.95
$W' \rightarrow e\nu \ (1100 \text{ GeV})$	3.01	0.07	1.76	1.36
$W' \rightarrow e \nu \ (1200 \text{ GeV})$	1.51	0.04	0.78	0.58

Heavy quark : b'

Search for 4th quark generation In the final state : Z + jets "blind" analysis

<u>Data : L = 1.1 fb -1</u>

Selection :

- 2 hight P_T isolated electrons or muons, with
 p_T > 20 GeV , |n| < 2
- 81 GeV < M_{II} < 101 GeV
- 2 variables to reject background :
 - $N_{jet}^{30} \ge 3$: N jets with E_T 30 GeV
 - • \mathcal{J}_{Jet}^{30} large : Scalar sum of all jets with E_T> 30 GeV

SM backgrounds :

- $Z^{o} + jets$
- $WW + jets, ZZ + jets, t\bar{t} + jets$
- + QCD (Instrumental) background

All background predicted from data by fitting E_T spectrum and modeling J_T <u>MC</u>: Pythia

Heavy quark : b'

Minimum J_T^{30}	Total Bkg. (stat.+syst. errors)	Data
50	$72.1 \stackrel{+17.7}{_{-22.6}}$	80
100	$71.2 \begin{array}{c} +17 \\ -22.3 \end{array}$	78
150	$42.7 \begin{array}{c} +9.48 \\ -14 \end{array}$	46
200	$20.5 \begin{array}{c} +5.64 \\ -7.77 \end{array}$	21
250	$9.67 \stackrel{+3.48}{-4.04}$	6
300	$4.67 \stackrel{+2.17}{_{-2.13}}$	4
350	$2.31 \stackrel{+1.4}{_{-1.16}}$	1
400	$1.17 \stackrel{+0.925}{_{-0.642}}$	1
450	$0.605 \stackrel{+0.655}{_{-0.378}}$	0

No excess -> Upper limits (95%CL)

For $Br(b' \to Z^{\circ}) = 100\%$ $M_{b'} > 270 \text{ GeV at } 95\% \text{ CL}$

Smaïn Kermiche

Z' search in T^+T^- events

Study resonance production in $\tau^+\tau^-$

"blind" analysis optimser on conrol region at $m_{_{\mbox{vis}}}$ < 120 GeV

<u>Data</u> : $L = 0.2 \text{ fb}^{-1}$

Selection :

 $\tau_e \tau_h, \tau_\mu \tau_h$

- 1 isolated electron : $E_T > 10$ GeV or
- 1 isolated muon $: p_T > 10 \text{ GeV}$ and
- 1 isolated reconstructed τ :
 - p_{T} (seed) > 6 GeV and
 - p_T (tracks + $\pi^{0'}s$) > 25 GeV and
- - $\tau_h \tau_h$
- τ candidate : E_{T} > 20 GeV
- \bullet 2 isolated τ with :
 - p_T (seed) > 6 GeV and
 - p_T (tracks + $\pi^{0'}$ s) > 25 GeV and 10 GeV

Z' search in T^+T^- events

Source	TeTh	$\tau_{\mu}\tau_{h}$	ThTh	Total
$Z/\gamma^* \rightarrow \tau\tau$	$45.36 {\pm} 6.84$	$38.39 {\pm} 5.72$	$4.19 {\pm} 0.77$	$87.94{\pm}12.38$
$Z/\gamma^* \rightarrow ee$	$0.14 {\pm} 0.14$	0	0	0.14 ± 0.14
$Z/\gamma^* \rightarrow \mu\mu$	0	$0.48 {\pm} 0.25$	0	0.48 ± 0.25
$\text{Jet} \rightarrow \tau$	$3.83 {\pm} 1.03$	3.72 ± 0.88	$3.16 {\pm} 0.55$	10.71 ± 1.46
Total	$49.32 {\pm} 6.94$	42.59 ± 5.85	7.35 ± 0.95	99.27 ± 12.55
Observed	46	36	8	90

M_{Z'} →~ 400 GeV at 95% CL

Smaïn Kermiche

Resonance search in e⁺e⁻ events

- Frequentist model search of excess over SM performed in mass intervall 150-950 GeV.
- Calculate in 1 GeV intervals the probability that the background fluctuates at the observed data level.
- Mass windows : 4.8+0.044*M_{ee}
- \bullet Lowest value 9.7 $10^{\text{-3}}$: M_{ee} ~ 367 GeV : consistent with statistical fluctuation
- Data compatible with SM -> set limits

Search for RS Graviton in $\gamma\gamma$ events

Search for RS Graviton in e⁺e⁻ events

Search for a narrow resonance decaying into 2 electrons in the mass range : 150-950 : $q\overline{q} (gg) \rightarrow G \rightarrow e^+e^-$

• Same analysis as slides 18-19 interpreted in terms of RS model.

 \bullet See slide 30 for final mass limits on $M^{}_1$ in combined channels with di-photons

(reminder data and cuts)

<u>Data : \mathcal{L} = 1.3 fb⁻¹</u>

Selection :

- 1 hight E_{T} isolated lepton, with E_{T} > 25 GeV and |eta| < 1.1 (Central Calorimeter)
- 1 hight Et electron pt > 25 GeV with |eta| < 1.1 or 1.2 < |eta| < 3.0 (Central + plug Calorimeter)
- 1 track matching in CC
- I photon conversion veto

MC : PYTHIA, PDF CTEQ5L + HERWIG

Search for RS Graviton in $\gamma\gamma+e^+e^-$ events

