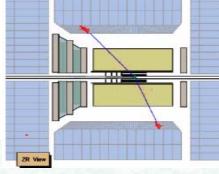


Multileptons and H++ at HERA

Jolanta Sztuk-Dambietz

University of Hamburg


on behalf

and

Outlook:

- Introduction
- •Multi-leptons at high-pt
- Search for doubly charged Higgs
- -Summary

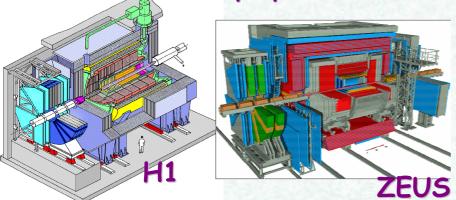
Presented results:

H1: H1prelim 07-062

H1 Coll, Phys. Lett. B 638 (2006) 432

ZEUS: ZEUSprelim 2007

HERA experiments



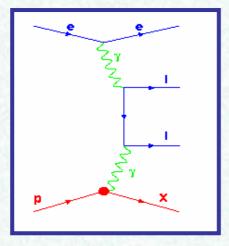
- >HERA-I: 1992-2000 L~120 pb-1/exp.
- >HERA-II 2002-2007 L~350 pb-1/exp.
 - -Luminosity upgrade:
 - ~10x more e-p data than in HERA-I
 - -Longitudinally polarized lepton beam
- ep collision at H1 and ZEUS

27.5 GeV

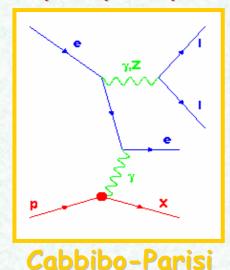
hermetic multi- purpose detectors

820 GeV 920 GeV

Presented results:

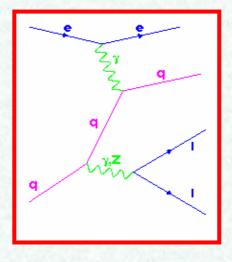

	H1	ZEUS
e+p	286 pb-1	272 pb-1
e-p	173 pb-1	206 pb-1
Total	459 pb-1	479 pb-1

Total luminosity ~ 1fb-1


=> rear/new phenomena σ~1pb shoud be visible in HERA

Multi-lepton events at HERA

How are lepton pairs produced?


yy process dominant

• ee -> ee

annihilation &

annihilation

Drell-Yan negligible

Multi-lepton production is a QED process

Scattering

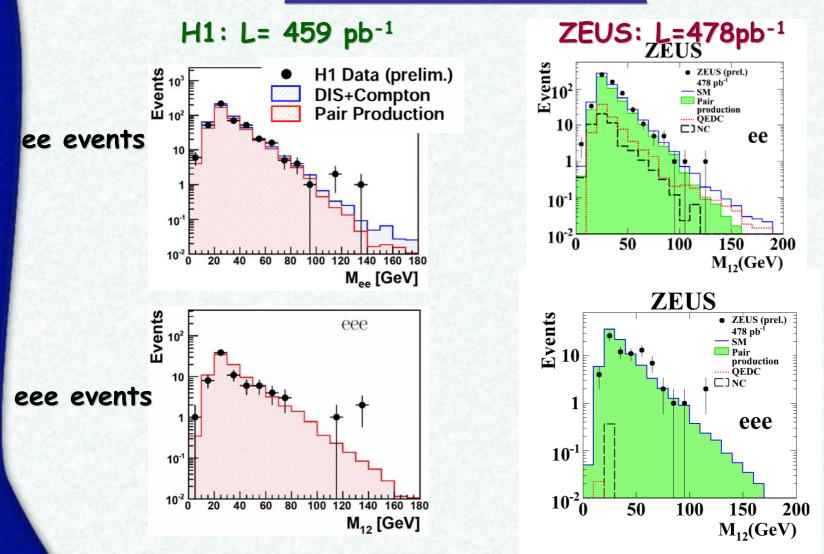
-very well understood in the Standard Model

Any excess over SM prediction at high mass region is sensitive to new phenomena (e.g. H±±)

Multi-lepton events at high mass

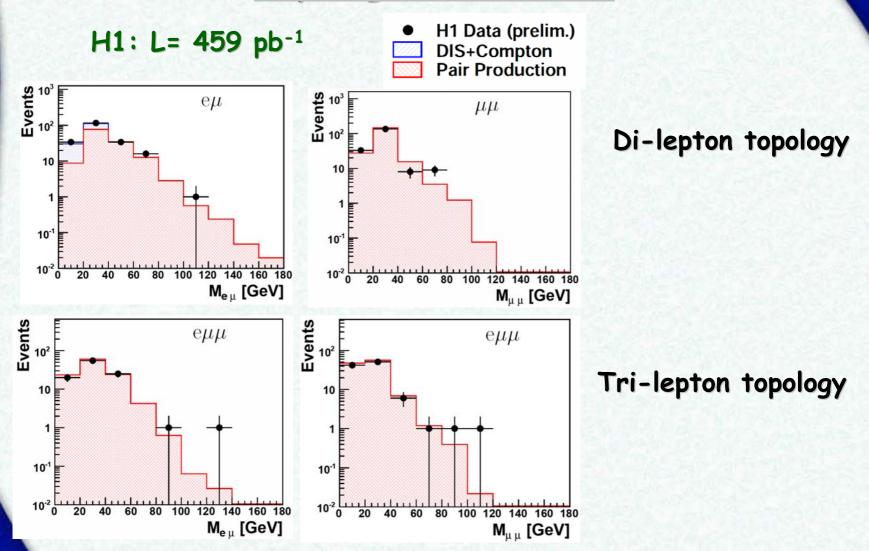
Selection:

- > Look for events with at least 2 high Pt leptons:
- $P_{+}^{11}>10$ and $P_{+}^{12}>5$ GeV and $20^{\circ}<\theta_{1}<160^{\circ}$
- > Additional lepton: Ee>5 GeV or P₊ +>2GeV (5° < θ₁ < 175°)
- > Covered topologies:
- * H1: ee, $e\mu$, $\mu\mu$ and eee, $e\mu\mu$ * ZEUS: ee, eee


Dominant background:

- > NC DIS: DIS e + fake electron
- \triangleright QED Compton: γ misidentified as e

Invariant mass M_{II}:


> Reconstructed using 2 highest Pt leptons

Multi-electron mass

Overall good agreement with the Standard Model

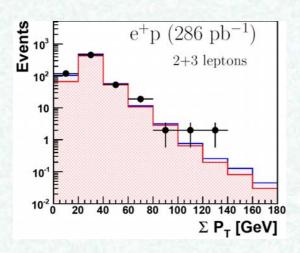
Topologies with $\mu(s)$

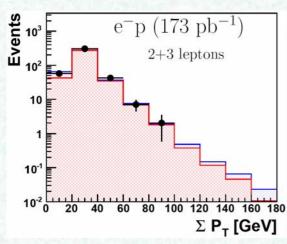
Overall good agreement with the Standard Model

Event yields at high M_{||} > 100 GeV

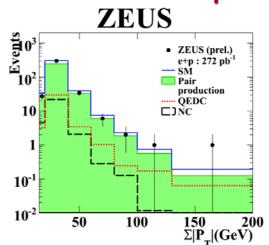
H1 Preliminary: L= 459 pb⁻¹

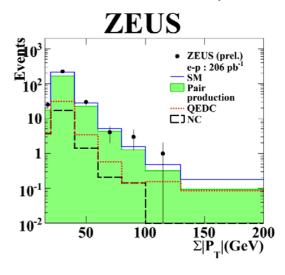
	Selection	Data	SM	Pair Production	NC-DIS + Compton				
	e^+p collisions (286 pb $^{-1}$)								
e+p	ee $M_{12} > 100 \text{ GeV}$	3	1.0 ± 0.2	0.6 ± 0.2	0.4 ± 0.1				
- P	$\mu \mu \ M_{\mu \mu} > 100 \ {\rm GeV}$	0	0.06 ± 0.03	0.06 ± 0.03	_				
	$e\mu M_{e\mu} > 100 \text{ GeV}$	1	0.53 ± 0.05	0.53 ± 0.05	_				
	eee $M_{12} > 100 \text{ GeV}$	3	0.6 ± 0.1	0.6 ± 0.1	_				
	$e\mu\mu \ M_{e\mu} > 100 \ { m GeV}$	1	0.04 ± 0.02	0.04 ± 0.02	_				
	$e\mu\mu \ M_{\mu\mu} > 100 \ GeV$	1	0.007 ± 0.005	0.007 ± 0.005	_				
			e^-p collisions (1	$173~{ m pb}^{-1})$					
e ⁻ p	ee $M_{12} > 100 \text{ GeV}$	0	0.55 ± 0.1	0.3 ± 0.1	0.25 ± 0.07				
- Р	$\mu \mu \ M_{\mu \mu} > 100 \ {\rm GeV}$	0	0.03 ± 0.02	0.03 ± 0.02	_				
	$e\mu~M_{e\mu}>100~{ m GeV}$	0	0.3 ± 0.05	0.3 ± 0.05	_				
	eee $M_{12} > 100 \text{ GeV}$	0	0.32 ± 0.06	0.32 ± 0.06	_				
	$e\mu\mu \ M_{e\mu} > 100 \ {\rm GeV}$	0	0.04 ± 0.01	0.04 ± 0.01	_				
	$e\mu\mu M_{\mu\mu} > 100 \text{ GeV}$	0	0.006 ± 0.004	0.006 ± 0.004	_				


All high mass events M_{II} > 100 GeV from e+p data


ZEUS Preliminary: e+p (L=272pb⁻¹) e+p (L=206pb⁻¹)

	Data sample	Data	SM	Pair Production	Compton	NC DIS
е+р	ee	1	0.9 ± 0.1	0.5 ± 0.07	0.4 ± 0.12	0.07 ± 0.03
	eee	2	0.6 +0.5 -0.07	0.6 ± 0.07	<0.01	< 0.5
e-p	ee	1	0.8 ± 0.08	0.4 ± 0.04	0.39 ± 0.10	0.04 ± 0.01
	eee	0	0.4 +0.5 -0.05	0.4 ± 0.05	<0.01	< 0.5


Multi-leptons: scalar EPt distribution


H1: L= 459 pb-1

ZEUS: L=478pb-1

Event yields at scalar $\Sigma P_{t} > 100 \text{ GeV}$

H1 Preliminary: L= 459 pb⁻¹

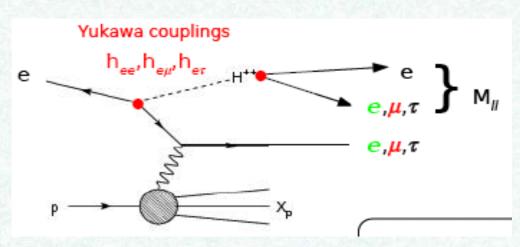
Data sample	Data	SM	Pair Production	NCDIS + Compton
e+p L=286pb	4	1.2 ± 0.2	1.0 ± 0.2	0.2 ± 0.1
e-p L=173pb	0	0.8 ± 0.2	0.6 ± 0.2	0.2 ± 0.1
All L=459pb	4	1.9 ± 0.4	1.5 ± 0.3	0.4 ± 0.1

H1:All events at high Σ Pt come from e+p data

ZEUS Preliminary: L=478pb⁻¹

Data sample	Data	SM	Pair Production	Compton	NC DIS
e+p L=272pb	2	0.93 +0.10 -0.09	0.67 ± 0.07	0.23 +0.07 -0.06	0.02 ± 0.01
e-p L=206pb	1	0.65 +0.08 -0.07	0.41 ± 0.04	0.24 +0.07 -0.06	0.01 ± 0.01
All L₌478pb	3	1.58 +0.16 -0.12	1.08 ± 0.11	0.47 +0.15 -0.11	0.03 ± 0.01

Search for doubly charged Higgs


In extension to SM:

- H±± appears in Higgs triplet(s) of non-zero hypercharge
- Left-right symmetries: $SU(2)_R \times SU(2)_L \times U(1)_{B-L}$
- provides mass to Majorana neutrinos
- Couplings to leptons h_{II}R,L unknown

Democratic scenario: hee=heu=het

One dominant coupling $h_{el} >> 0$, others ~ 0

HERA: e*p->l* H** X where H**-> e* l*

Double charged Higgs

Selection:

```
√Data: HERA-I L=118 pb-1
```

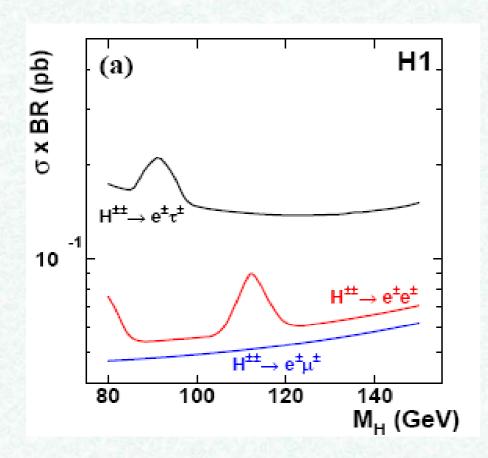
```
√ee, eµ: based on multi-lepton analysis
```

```
√et with t->e,µ and hadrons
```

- ✓ 2 high-Pt leptons with the same charge as a beam lepton
- √Reconstruct inv. mass Higgs candidates M_{II}

Results:

M_{II}>65 GeV


Obs SM exp. ee 3 2.45 \pm 0.11 eµ 1 4.17 \pm 0.44 et 1 2.1 \pm 0.5

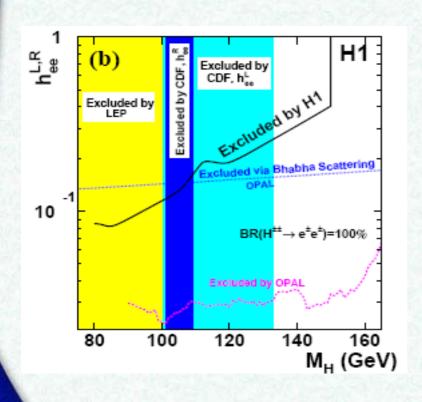
M₁₁>100 GeV

Only one ee event satisfies the final selection createria

No evidence for H±± => set limits

Double charged Higgs: results

Upper limits for H±± production at 95%C.L. derived by modified frequentist method


$$H^{\pm\pm} \longrightarrow e^{\pm}T^{\pm}$$
 $H^{\pm\pm} \longrightarrow e^{\pm}e^{\pm}$
 $H^{\pm\pm} \longrightarrow e^{\pm}\mu^{\pm}$

Best sensitivity: $\sigma \times Br(h_{e\mu}) < 0.05 pb$

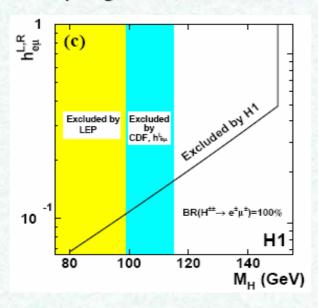
Double charged Higgs: upper limits on hee

H±± boson couples to electron-electron pair only

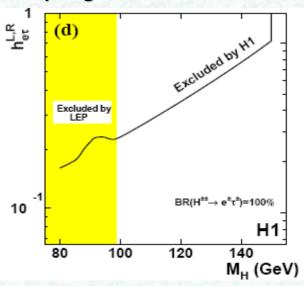
Topologies: ee and eee (excess was observed in HERA I data)


```
LEP, TeVatron:
```

-H^{±±} Pair Production: h_{el} independent


OPAL:

-H±± single production


Limits are set for left- and right-handed h_{eu} couplings

Doubly charged Higgs: upper limits on heu and her

- H±± boson couples
 to electron-muon pair only
 - Topologies: eμ and eμμ

- H±± boson couples
 to electron-tau pair only
 - ■Topologies: et and ett

For couplings of em. strength $h_{e\mu}\sim0.3$: mass exclusion $M_{H\pm\pm} > 141$ GeV

h_{et}~0.3: mass exclusion M_{H±±} > 112 GeV

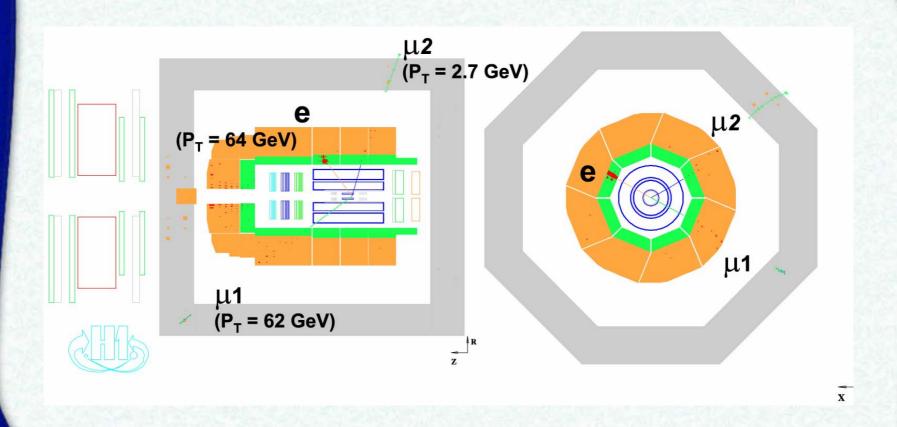
HERA limits extend beyond LEP, TeVatron reach

Summary

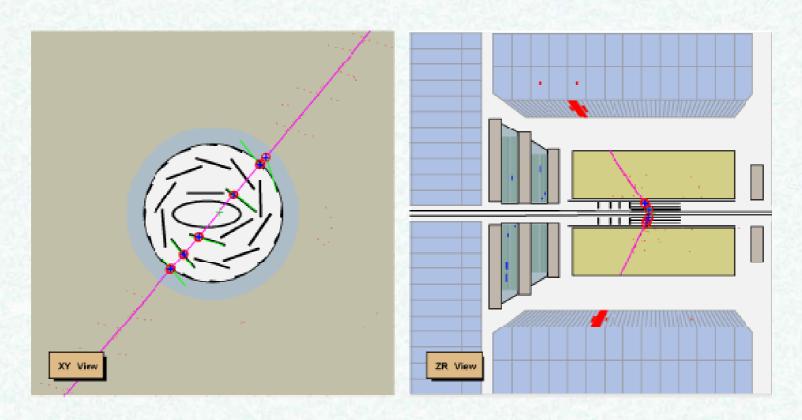
>Multi-lepton production has been investigated in ep collision

- all HERA data were analysed by both ZEUS and H1 coll. (~1fb)
- general good agreement with the SM prediction
- Events at ΣEt > 100 GeV:

H1: 4 observed where 1.9 is expected (all events in e+p collision)


ZEUS: 3 observed where 1.6 is expected (2 in e+p and 1 in e-p collision)

Exotic production of H±± has been studied by H1:


- All e, μ , T topologies analysed
- Constrains on the H±± production cross-section × Br were obtained
- Limits were set on diagonal hee and non-diagonal couplings heu, her
- HERA limits extend beyond LEP and TeVatron reach

Backup slides

High mass events H1

High mass events ZEUS

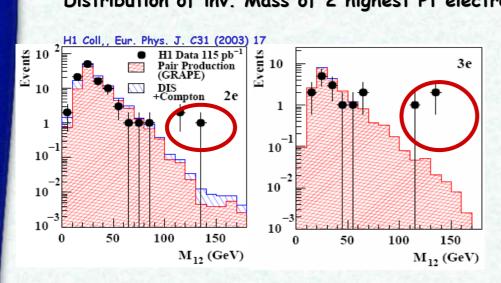
Mass = 100.8 GeV, Pt^{e1} = 50.4 GeV, Pt^{e2} = 50.0 GeV, θ_{e1} = 1.12(rad), θ_{e2} = 0.97(rad).

Multi-electrons: summary tables

H1 HERA-I+II (L=459pb-1, preliminary)

H1 Multi-lepton analysis HERA I+II (459 pb⁻¹, preliminary)

	1	J		. 1
Selection	Data	SM	Pair Production	NC-DIS + Compton
ee	446	450 ± 68	375 ± 42	75 ± 39
$\mu\mu$	185	194 ± 38	194 ± 38	-
$e\mu$	201	194 ± 26	136 ± 13	58 ± 17
eee	81	90 ± 10	90 ± 10	
$e\mu\mu$	102	112 ± 19	112 ± 19	<u></u> :

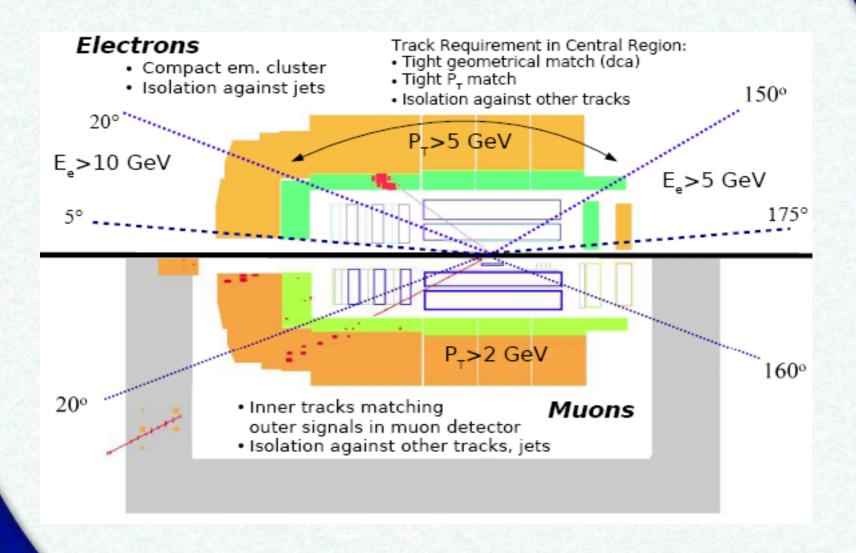

ZEUS HERA-I+II (L=478pb-1, preliminary)

Туре	DATA	SM	Pair production	QEDC	NC
2e	573	561±36.2		79.1±26.1	50.6±4.6
3e	79	88.8±5.7		0.02±0.01	0.4±0.01
2e+3e	652	649.7±36.4		79.1±26.1	51.0±4.6

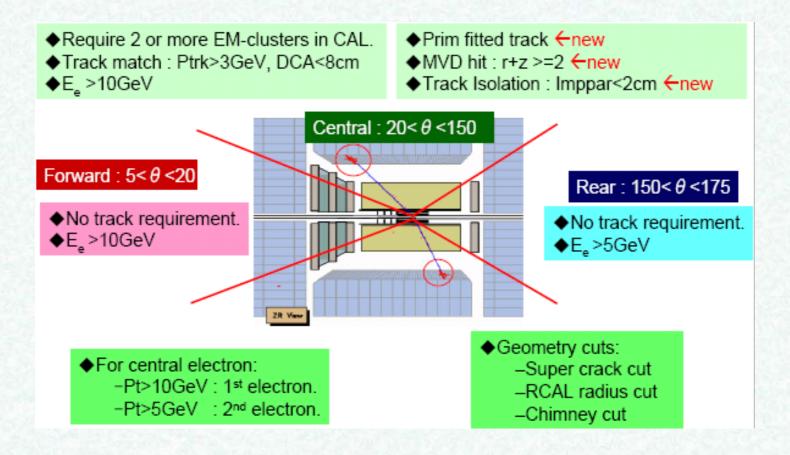
Motivation

>H1 results for ee and eee channels (HERA-I data)

Distribution of inv. Mass of 2 highest Pt electrons


- General good agreement with SM
- Interesting events at Mee >100 GeV

Selection	Data	SM	Pair Production (GRAPE)	DIS + Compton
" $2e$ " $M_{12} > 100 \text{GeV}$		0.30 ± 0.04		0.09 ± 0.02
${\rm ``3e"}M_{12} > 100{\rm GeV}$	3	0.23 ± 0.04	0.23 ± 0.03	$<0.02(95\%\mathrm{C.L.})$



H±± production?

Event Selection H1

Event Selection ZEUS

